中文    English
当前位置: 本站首页 » 科学研究 » 科研成果 » 正文

张良培--Multidomain Subspace Classification for Hyperspectral Images

发布日期:2016-11-30 08:33:29 阅读次数:[1661]次 作者:

核心提示:来源出版物: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

作者: Zhang, LP (Zhang, Liangpei); Zhu, XJ (Zhu, Xiaojie); Zhang, LF (Zhang, Lefei); Du, B (Du, Bo)
来源出版物: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING  卷: 54  期: 10  页: 6138-6150  DOI: 10.1109/TGRS.2016.2582209  出版年: OCT 2016
摘要: Hyperspectral imaging offers new opportunities for pattern recognition tasks in the remote sensing community through its improved discrimination in the spectral domain. However, such advanced image processing also brings new challenges due to the high data dimensionality in both the spatial and spectral domains. To relieve this issue, in this paper, we present a novel multidomain subspace (MDS) feature representation and classification method for hyperspectral images. The proposed method is based on a patch alignment framework. In order to optimally combine the feature representations from the various domains and simultaneously enhance the subspace discriminability, we incorporate the supervised label information into each domain and further generalize the framework to a multidomain version. Furthermore, we develop an iterative approach to alternately optimize the MDS objective function by considering it as two subconvex optimizations. The classification performance on three standard hyperspectral remote sensing images confirms the superiority of the proposed MDS algorithm over the state-of-the-art subspace learning methods.


版权所有:测绘遥感信息工程国家重点实验室   
联系地址: 中国·武汉市珞瑜路129号   邮编: 430079   E-mail:liesmars@whu.edu.cn
Tel/Fax:027-68778969(办公室) 027-68778229(国际交流办公室)027-68778525(研究生管理办公室)