中文    English
当前位置: 本站首页 » 科学研究 » 科研成果 » 正文

A Multilevel Point-Cluster-Based Discriminative Feature for ALS Point Cloud Classification

发布日期:2016-11-30 16:32:37 阅读次数:[1664]次 作者:

核心提示:来源出版物: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

作者: Zhang, ZX (Zhang, Zhenxin); Zhang, LQ (Zhang, Liqiang); Tong, XH (Tong, Xiaohua); Mathiopoulos, PT (Mathiopoulos, P. Takis); Guo, B (Guo, Bo); Huang, XF (Huang, Xianfeng); Wang, Z (Wang, Zhen); Wang, YB (Wang, Yuebin)
来源出版物: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING  卷: 54  期: 6  页: 3309-3321  DOI: 10.1109/TGRS.2016.2514508  出版年: JUN 2016
摘要: Point cloud classification plays a critical role in point cloud processing and analysis. Accurately classifying objects on the ground in urban environments from airborne laser scanning (ALS) point clouds is a challenge because of their large variety, complex geometries, and visual appearances. In this paper, a novel framework is presented for effectively extracting the shape features of objects from an ALS point cloud, and then, it is used to classify large and small objects in a point cloud. In the framework, the point cloud is split into hierarchical clusters of different sizes based on a natural exponential function threshold. Then, to take advantage of hierarchical point cluster correlations, latent Dirichlet allocation and sparse coding are jointly performed to extract and encode the shape features of the multilevel point clusters. The features at different levels are used to capture information on the shapes of objects of different sizes. This way, robust and discriminative shape features of the objects can be identified, and thus, the precision of the classification is significantly improved, particularly for small objects.


版权所有:测绘遥感信息工程国家重点实验室   
联系地址: 中国·武汉市珞瑜路129号   邮编: 430079   E-mail:liesmars@whu.edu.cn
Tel/Fax:027-68778969(办公室) 027-68778229(国际交流办公室)027-68778525(研究生管理办公室)