中文    English
当前位置: 本站首页 » 科学研究 » 科研成果 » 正文

Transfer Learning With Fully Pretrained Deep Convolution Networks for Land-Use Classification

发布日期:2017-10-12 15:44:23 阅读次数:[1239]次 作者:

核心提示:来源出版物: IEEE GEOSCIENCE AND REMOTE SENSING LETTERS

作者: Zhao, B (Zhao, Bei); Huang, B (Huang, Bo); Zhong, YF (Zhong, Yanfei)

来源出版物: IEEE GEOSCIENCE AND REMOTE SENSING LETTERS  卷: 14  期: 9  页: 1436-1440  DOI: 10.1109/LGRS.2017.2691013  出版年: SEP 2017  

摘要: In recent years, transfer learning with pretrained convolutional networks (CNets) has been successfully applied to land-use classification with high spatial resolution (HSR) imagery. The commonly used transfer CNets partially use the feature descriptor part of the pretained CNets, and replace the classifier part of the pretrained CNets in the old task with a new one. This causes the separation and asynchrony between the feature descriptor part and the classifier part of the transferred CNets during the learning process, which reduces the effectiveness of the training process. To overcome this weakness, a transfer learning method with fully pretrained CNets is proposed in this letter for the land-use classification of HSR images. In the proposed method, a multilayer perceptron (MLP) classifier is quickly pretrained using the high-level features extracted by the feature descriptor of the pretrained CNets. Fully pretrained CNets can be generated by concatenating the feature descriptor of the pretrained CNets and the pretained MLP. Because both the feature descriptor and the classifier are pretrained, the separation and asynchrony between the two parts can be avoided during the training process. The final transferred CNets are then obtained by fine-tuning the fully pretrained CNets with the random cropping and mirroring strategy. The experiments show that the proposed method can accelerate the convergence of the training process with no loss of accuracy in land-use classification, and its performance is comparable to other latest methods.

版权所有:测绘遥感信息工程国家重点实验室   
联系地址: 中国·武汉市珞瑜路129号   邮编: 430079   E-mail:liesmars@whu.edu.cn
Tel/Fax:027-68778969(办公室) 027-68778229(国际交流办公室)027-68778525(研究生管理办公室)