中文    English
当前位置: 本站首页 » 科研成果 » 正文

A Novel Automatic Change Detection Method for Urban High-Resolution Remotely Sensed Imagery Based on Multiindex Scene

发布日期:2016-12-01 18:28:15 阅读次数:[2196]次 作者:

核心提示:来源出版物: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

标题: A Novel Automatic Change Detection Method for Urban High-Resolution Remotely Sensed Imagery Based on Multiindex Scene Representation
作者: Wen, DW (Wen, Dawei); Huang, X (Huang, Xin); Zhang, LP (Zhang, Liangpei); Benediktsson, JA (Benediktsson, Jon Atli) 
来源出版物: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING  卷: 54  期: 1  页: 609-625  DOI: 10.1109/TGRS.2015.2463075  出版年: JAN 2016
摘要: The new generation of Earth observation sensors with high spatial resolution can provide detailed information for change detection. The widely used methods for high-resolution image change detection rely on textural/structural features. However, these spatial features always produce high-dimensional data space since they are related to a series of parameters, e.g., window sizes and directions. Machine learning methods are also commonly employed, but their performances are subject to the quantity and quality of the training samples, and hence, much effort should be made to collect the high-quality samples. To address these problems, in this study, a novel multiindex automatic change detection method is proposed for the high-resolution imagery. The notable advantages of the proposed model include the following: 1) Complicated urban scenes are represented by a set of low dimensional but semantic information indexes, replacing the high-dimensional but low-level features (e.g., textural and structural features), and 2) the change detection model is carried out automatically without using training samples since the information indexes can directly indicate the primitive urban classes. The multiindex representation refers to the enhanced vegetation index, the water index, and the recently developed morphological building index. Experiments were conducted on the multitemporal WorldView-2 images over Shenzhen City (south of China) and Kuala Lumpur (the capital of Malaysia), where promising results were achieved by the proposed method. Moreover, the traditional methods based on the state-of-the-art textural/morphological features were also implemented for the purpose of comparison, which further validates the advantages of our proposed model.


版权所有:测绘遥感信息工程国家重点实验室   
联系地址: 中国·武汉市珞瑜路129号   邮编: 430079   E-mail:liesmars@whu.edu.cn
Tel/Fax:027-68778969(办公室) 027-68778229(国际交流办公室)027-68778525(研究生管理办公室)