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A B S T R A C T   

The climate change is expected to trigger changes in vegetation phenology, temperature, and soil moisture (SM), 
altering the productivity of ecosystems. Despite numerous existing efforts, however, their contradicting con
clusions suggest that how vegetation productivity is impacted by these factors still remains unclear in the 
Northern Hemisphere ecosystems (≥25◦N). This study used the optimal fingerprint (OFP) method and redun
dancy analysis (RDA) to attribute the importance of key drivers of vegetation productivity from 2001 to 2019 
based on long-term remote sensing and FLUXNET observation data. The results showed that solar-induced 
chlorophyll fluorescence (SIF), gross primary productivity (GPP), and net primary productivity (NPP) were 
increased in 72.01% to 88.04% of the vegetation areas. We observed that the correlation between vegetation 
productivity and spring phenology, autumn phenology, growing season length (GSL), SM, temperature reached 
99% significance level, where early spring phenology, delayed autumn phenology, extended GSL, increased SM, 
and elevated temperature all enhanced ecosystem productivity, with GSL being the most important factor driving 
vegetation productivity. In addition, the pixel-wise attribution analysis indicated that GSL, as the dominant 
driver, accounted for 30.24% of the vegetation productivity, followed by temperature (23.79%), spring 
phenology (19.56%), autumn phenology (14.09%), and SM (12.31%), all of which were dominated by positive 
effects (54.19% to 73.14%). The results from this study serve as important references that benefit our under
standing of driving mechanisms of temperature-phenology-SM interactions on ecosystem productivity.   

1. Introduction 

Vegetation photosynthesis regulates 90% of the global gas exchange 
between the terrestrial biosphere and the atmosphere, where gross pri
mary productivity (GPP) is the largest global carbon flux and a key 
parameter for quantifying ecosystem carbon sequestration capacity 
(Goetz and Prince, 1999). The terrestrial ecosystems at middle and high 
latitudes play an important role in regulating the global carbon cycle 
and atmospheric CO2 concentration (Braswell et al., 1997; Piao et al., 
2008; Jia and Zhou, 2023). Therefore, it is important to accurately un
derstand the dominant drivers of vegetation productivity at middle and 
high latitude ecosystems in the Northern Hemisphere. 

Under the context of global climate change, scholars have observed 
notable changes in meteorological and hydrological (e.g., temperature 
and soil moisture (SM)) conditions (IPCC, 2013; Albergel et al., 2013; 
Deng et al., 2020). One of the main controls of phenology is the tem
perature (Walther et al., 2002; Keenan et al., 2014; Fu et al., 2015), with 

warming temperatures advancing spring phenology (hereinafter 
referred to as SOS), delaying autumn phenology (hereinafter referred to 
as EOS) (Menzel et al., 2006; Körner and Basler, 2010), and extending 
growing season length (GSL). Studies have shown that the extension of 
the vegetation GSL leads to an increase in vegetation productivity 
(Richardson et al., 2010; Dragoni et al., 2011; Keenan et al., 2014; 
Gonsamo et al., 2017). However, other studies found contradicting ev
idence (Piao et al., 2008; Barichivich et al., 2013). Therefore, it remains 
unclear what role vegetation phenology changes play in driving vege
tation productivity in terrestrial ecosystems. 

In addition, there are many factors directly and indirectly affecting 
vegetation productivity. Increasing CO2 concentrations drive enhanced 
vegetation productivity (Wang et al., 2020) and also lead to rising 
temperatures (Came et al., 2007). With continued warming, radiation 
limitation will increase and impose a strong upper limit on boreal 
ecosystem productivity (Zhang et al., 2020). Nutrient availability de
termines potential vegetation productivity, and actual productivity 
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depends on nutrient recycling (Vergutz et al., 2012; Scalon et al., 2022). 
Moreover, many pieces of evidence suggest that variations in tempera
tures and SM affect the vegetation productivity (Green et al., 2019; 
Nemani et al., 2003; Huang et al., 2019; Liu et al., 2020a; Dang et al., 
2022; dela Torre et al., 2021). For future projections, studies have shown 
an increasing trend in temperatures (IPCC, 2013) while a decreasing 
trend in SM (Albergel et al., 2013; Deng et al., 2020). In terms of tem
perature, ecosystems in the Northern Hemisphere ecosystems have not 
yet reached optimal photosynthetic temperatures (Huang et al., 2019), 
and rising temperatures is expected to continue boosting vegetation 
productivity. However, increased temperatures can lead to higher vapor 
pressure deficit (VPD), resulting in vegetation stomatal closure (Wil
liams et al., 2012) and increased vegetation transpiration (Liu et al., 
2020b), which in turn limits vegetation productivity (He et al., 2022). 
The changes in SM can also greatly alter vegetation productivity (Green 
et al., 2019; Liu et al., 2020a; Wu et al., 2021). Studies have shown that 
reduced SM in summer due to early SOS (Lian et al., 2020) is responsible 
for the restricted vegetation productivity. Given the strong interaction 
between phenology, temperature, and SM through atmosphere- 
vegetation-soil interactions (Seneviratne et al., 2010; Dang et al., 
2023), their impact on ecosystem vegetation productivity cannot be 
analyzed in an isolated manner. Instead, a joint investigation that con
siders these factors simultaneously is much needed. 

In this study, we investigated trends in vegetation productivity 
(solar-induced chlorophyll fluorescence (SIF), GPP, and net primary 
productivity (NPP)) in terrestrial ecosystems and their drivers from 
2001 to 2019 in the Northern Hemisphere using remotely sensed data, 
modeled data, and the FLUXNET dataset. We first analyzed the spatial 
patterns of temperature, SM, vegetation phenology and vegetation 
productivity and their effects on each other. Then, we analyzed the 
relationship and importance of phenology, temperature, and SM with 
vegetation productivity using remote sensing data and verified the re
sults using FLUXNET observation data. Finally, we quantified the spatial 
patterns of the dominant drivers of vegetation productivity by SOS, EOS, 
GSL, land surface temperature (LST), and SM using attribution analysis. 

2. Materials and method 

2.1. Datasets 

2.1.1. Solar-induced chlorophyll fluorescence 
SIF is considered a great proxy for vegetation productivity in eco

systems (Guanter et al., 2014; Sun et al., 2017; Chen et al., 2021). The 
global product of SIF (GOSIF) dataset from 2001 to 2019 used in this 
study was developed using MODIS products and reanalysis data and 
orbiting carbon ervatory-2(OCO-2) (https://data.globalecology.unh. 
edu/data/GOSIF_v2/). The GOSIF (hereinafter referred to as SIF) data
set contains three sub-datasets with temporal resolution of 8-day, 
monthly and yearly, and a spatial resolution of 0.05◦ (Li and Xiao, 
2019). This study used SIF annual temporal resolution data as a proxy 
for vegetation productivity. 

2.1.2. Gross primary productivity and net primary productivity 
GPP and NPP represent vegetation productivity, with larger numbers 

indicating greater productivity. In this study, GPP (2001 to 2019) were 
obtained from MODIS products (MOD17A2H Version 6, 8-day, 500 m, 
https://search.earthdata.nasa.gov/). The 8-day cumulative composite 
values were averaged as annual means with spatial resolution resampled 
to 0.05◦ for analysis. In addition, the NPP from 2001 to 2019 were ob
tained from MODIS products (MOD17A3HGF Version 6, annual, 500 m, 
https://search.earthdata.nasa.gov/) with a spatial resolution resam
pling of 0.05◦ for analysis. 

2.1.3. Phenology indicators 
The phenology indicators with a spatial resolution of 500 m (2001 to 

2019), including SOS, EOS, and GSL, were derived from the MODIS Land 

Cover Dynamics (MCD12Q2) product (https://search.earthdata.nasa. 
gov/) (Ganguly et al., 2010). They were resampled at a spatial resolu
tion of 0.05◦ for analysis. 

2.1.4. Land surface temperature 
LST were derived from the MODIS Land Surface Temperature 

(MOD11C3) product (https://search.earthdata.nasa.gov/) from 2001 to 
2019, which has a spatial resolution of 0.05◦. The correlation coefficient 
between LST and air temperature (Ts) from FLUXNET dataset is 0.946 
(P < 0.01, Fig. S1). It should be noted that LST denotes vegetation 
canopy temperature and Ts denotes air temperature. Moreover, the LST 
from the MODIS was reported to correlate closely with the Ts (Sims 
et al., 2008; Ueyama et al., 2010). Therefore, LST is a good substitute for 
Ts for the analysis. 

2.1.5. Soil moisture 
SM from 2001 to 2019 were obtained from the TerraClimate with a 

spatial resolution of 0.05◦ (Abatzoglou et al., 2018). The TerraClimate 
dataset shows a significant improvement in the overall mean absolute 
error and increased spatial realism relative to the coarser resolution 
gridded dataset (Abatzoglou et al., 2018). 

2.1.6. Vegetation type 
The vegetation cover types were derived from the MODIS Land Cover 

Type (MCD12C1) product with the International Geosphere-Biosphere 
Programme (IGBP) classification scheme (https://search.earthdata.nas 
a.gov/). MODIS IGBP land cover data is an annual synthetic product 
with a spatial resolution of 0.05◦. The vegetation types include ever
green needleleaf forests (ENF), evergreen broadleaf forests (EBF), de
ciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), 
mixed forests (MF), closed shrublands (CSH), open shrublands (OSH), 
woody savannas (WSA), savannas (SAV), grasslands (GRA), wetlands 
(WET), croplands (CRO), urban and built lands (UBL), and cropland/ 
natural vegetation mosaics (CNV). 

2.1.7. Land model 
To further identify the controlling factors for the temporal dynamics 

of vegetation productivity, we used GPP simulated by the land model 
(CABLE, 2001–2016) under different forcing scenarios (https://zenodo. 
org/record/3629955#.YykVl8hlL15) (Sitch et al., 2015). The CABLE 
model was run in four scenarios (S0: constant CO2, climate change, and 
land cover change; S1: changing CO2 concentration only; S2: changing 
CO2 concentration and climate factors; S3: changing CO2 concentration, 
climate factors, and land cover). These four scenario simulations enable 
us to quantify the impact of CO2 fertilization (S1-S0), climate change 
(S2-S1) and land use cover change (S3-S2). 

2.1.8. FLUXNET2015 dataset 
Flux tower observations were obtained from the FLUXNET2015 

Dataset provided by the Global Energy Observations (https://fluxnet. 
org/data/fluxnet2015-dataset/). The FLUXNET dataset provides GPP 
estimates based on the respiration extrapolation method (Reichstein 
et al., 2005) and the light use efficiency method (Lasslop et al., 2010), 
and thus the mean values of GPP from these two methods were used as 
the phenological parameters. In addition, FLUXNET dataset also pro
vides Ts and soil water content data (SWC). It should be noted that both 
SWC of FLUXNET and the SM of TerraClimate are indicators of soil 
moisture content, only differing in the names of the different products. 
To reflect long-term GPP and phenology dynamics, FLUXNET sites 
(Fig. S2; Table S1) with no less than ten years of data were selected. We 
used Savitzky-Golay (SG) filtering to smooth the daily GPP curves for all 
32 FLUXNET sites and then extracted the waiting parameters using the 
dynamic threshold method (Cong et al., 2012). 

C. Dang et al.                                                                                                                                                                                                                                    

https://data.globalecology.unh.edu/data/GOSIF_v2/
https://data.globalecology.unh.edu/data/GOSIF_v2/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://search.earthdata.nasa.gov/
https://zenodo.org/record/3629955%23.YykVl8hlL15
https://zenodo.org/record/3629955%23.YykVl8hlL15
https://fluxnet.org/data/fluxnet2015-dataset/
https://fluxnet.org/data/fluxnet2015-dataset/


Ecological Indicators 151 (2023) 110326

3

2.2. Data analysis 

2.2.1. Optimal fingerprint method 
We performed an attribution analysis (IPCC, 2021) to explore the 

drivers of vegetation productivity (SOS, EOS, GSL, LST, and SM) in the 
Northern Hemisphere using the OFP method (Allen and Tett, 1999; Zhu 
et al., 2016). The OFP expresses the observation (Y) as a linear combi
nation of scaled (βi) responses to external driving factors (xi), and in
ternal variability (ε):Y =

∑N
i=1βixi + ε. The scaling factors (βi) are 

estimated on the basis of the total least square method to adjust the 
amplitude of the responses of vegetation productivity to each driving 
factor. Where Y and × are the normalized observed vegetation pro
ductivity and drivers, respectively; β represents the response coefficient 
of the external driver; i indicates the i-th factor (i = 1,2, ⋯,N). The co
efficient β with a value significantly greater than 0 denotes the strong 
effect of external drivers on the productivity of the observed vegetation. 

2.2.2. Redundancy analysis 
We quantitatively assessed the effect of drivers on vegetation pro

ductivity via Redundancy analysis (RDA) (Rao, 1964) with the forward 
selection and determined the contribution of each variable with the 
corresponding significance using the Monte Carlo substitution test. RDA 
is principal component analysis of the fitted value matrix of the multi
variate multiple linear regression between the response variable matrix 
and the explanatory variables matrix, and is an extension of multi- 
response variable (multi-response) regression analysis. The simple and 

conditioned effects of drivers on vegetation productivity obtained in the 
RDA allow us to determine the dominant factors with a strong impact on 
vegetation productivity. The correlation between the explanatory vari
able (i.e., the drivers) and the response variable (i.e., vegetation pro
ductivity) could be approximated by projecting the response variable 
vertically onto the line covering the arrows of the explanatory variable. 
Smilauer and Leps (2014) realized the combination of sorting graph 
technology and multivariate statistical methods. The farther the pro
jection point falls in the direction indicated by the arrow of the 
explanatory variable, the stronger the correlation; the direction of the 
arrow represents a positive/negative correlation, with the same direc
tion representing a positive correlation, anisotropic a negative correla
tion, and at the origin of the coordinates representing no correlation (Ter 
Braak and Smilauer, 2002). 

3. Results and discussion 

3.1. Trends of LST, SM, phenology, and productivity based on remote 
sensing data 

The analysis of different remotely sensed and hydrological data 
points to the spatial patterns of increased LST, decreased SM, lengthened 
phenology, and increased vegetation productivity at mid to high lati
tudes (latitude ≥ 25◦N) in the Northern Hemisphere (Fig. 1 and Fig. S3). 
The LST increased by 0.041 K/a (P < 0.01) (Fig. S3a) from 2001 to 2019, 
where MODIS MOD11C3 showed 77.52% (Fig. 1a, i) of the pixels 

Fig. 1. LST, SM, phenology, and productivity trend patterns in the Northern Hemisphere (latitude ≥ 25◦) from 2001 to 2019 based on remote sensing observations. 
(a) LST of MODIS MOD11C3; (b) SM of Terra Climate; (c) SOS of MODIS MCD12Q2; (d) EOS of MODIS MCD12Q2; (e) GSL (i.e. GSL = EOS- SOS) of MODIS 
MCD12Q2; (f) SIF; (g) GPP of MODIS MOD17A2H; (h) NPP of MODIS MOD17A3HGF; (i) the ratio of area with positive and negative trends for each indicator. The 
color of the indicator corresponds to the color of the ribbon bar value. 
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showing LST increase. However, SM decreased on average by − 0.097 
mm/a (Fig. S3b), where TerraClimate suggested a decrease in partial SM 
(55.61% of pixels with reduced SM (Fig. 1b, i). 

The SOS was advanced by 0.318 days/a on average (P < 0.01; 
Fig. S3c) from 2001 to 2019, with 72.11% of the pixels showing a trend 
of advanced SOS (Fig. 1c, i). However, EOS was delayed by 0.133 days/a 
on average (P = 0.07; Fig. S3d), with 62.78% of the pixels showing a 
delayed trend (Fig. 1d, i). Thus, vegetation GSL was extended on average 
by 0.499 days/a (Fig. S3e), with 72.41% of the pixels showing extended 
GSL (Fig, 1e, i). Moreover, SOS (R = -0.64, P < 0.05), EOS (R = 0.29), 
and GSL (R = 0.59, P < 0.05) presented correlation with LST (Fig. 2b), 
indicating that vegetation phenology changes were influenced by 
increased temperature (Walther et al., 2002; Keenan et al., 2014; Fu 
et al., 2015). The linear properties of the temperature-phenology rela
tionship suggest that phenology has great potential in the future 
warming response, although the existence of photoperiodic, cold-heat 
accumulation, and dormancy constraints may limit this response (Cle
land et al., 2007). 

The investigated vegetation productivity indicators (SIF, GPP, and 
NPP) all pointed to an increasing trend of productivity for most of the 
pixels from 2001 to 2019 (Fig. S3f, g, h). SIF, GPP, and NPP showed 
increasing trends in 74.15% (Fig. 1f, i), 88.08% (Fig. 1g, i), and 77.09% 
(Fig. 1h, i) of the pixels, respectively, with a consistent spatial distri
bution pattern. The observed changes in LST, SM, phenology, and 
vegetation productivity presented high consistency with those recorded 
in ground-based flux tower observations (see below), thus enhancing the 
credibility of the above results from remotely sensed datasets. 

From Fig. 2, it was clear that the interaction relationship among LST, 
SM, SOS, EOS, and GSL with each other and the positive and negative 
effects on vegetation productivity. The study area showed a trend of LST 
raising over a large area (Fig. 1a), consistent with the IPCC (2013) 
report. LST elevation advanced SOS (Fig. 1c) and delayed EOS (Fig. 1d), 
which in turn lengthened GSL (Fig. 1e). This result was consistent with 
previous findings that temperature changes altered SOS and EOS 
(Menzel et al., 2006; Körner and Basler, 2010). The extension of the 
vegetation growth season would increase vegetation transpiration 
(vegetation transpiration accounts for approximately 65% of evapo
transpiration (Good et al., 2015)) (Fig. S4), leading to a decrease in SM, 
consistent with previous findings that earlier SOS led to a decrease in SM 
in summer (Lian et al., 2020). In addition, temperature- 
evapotranspiration-SM were coupled, with temperature rising to cause 
an increase in evapotranspiration, which in turn led to a decrease in SM. 
In turn, a decrease in SM led to a decrease in evapotranspiration, 
resulting in an elevated temperature (Seneviratne et al., 2010). Changes 
of vegetation phenology, LST, and SM would affect ecosystem vegeta
tion productivity (Zhang et al., 2022b; Huang et al., 2019; Dang et al., 

2022; Gu et al., 2022; Gonsamo et al., 2017). Fig. 2a clearly showed the 
interaction among them and the impact on productivity. Moreover, 
Fig. 2b quantified the correlation coefficients between factors with each 
other further demonstrating the positive and negative effects among 
them. Thus, temperature-vegetation-SM are coupled to each other, and 
their spatial patterns and importance for the dominant drivers of vege
tation productivity changes remain unclear. 

3.2. Trends of Ts, SWC, phenology, and productivity based on FLUXNET 
data 

Trends of daily Ts, SWC, and GPP were analyzed at sites (Fig. S2 and 
Table S1) with at least ten years of data from the FLUNEXT dataset from 
2001 to 2014 (Fig. 3). Ts (P = 0.8, Fig. 3a) and SM (P = 0.2, Fig. 3b) 
showed an insignificant increasing trend, while GPP showed a signifi
cant increasing trend (P < 0.01, Fig. 3f). Most flux tower sites (Fig. S2) 
presented increased Ts and while others presented decreased Ts 
(Fig. 1a). Moreover, SWC failed to show a significant increase (Fig. S2). 
In addition, trends of SOS, EOS, and GSL were analyzed using the dy
namic threshold method (Cong et al., 2012; White et al., 1997). Results 
suggested that SOS was advanced by 0.543 days/a (P = 0.13; Fig. 3c), 
EOS was delayed by 0.761 days/a (P < 0.01; Fig. 3d), and GSL was 
extended by 1.304 days/a (P = 0.01; Fig. 3e). The long-term ground flux 
tower observations verified the results of satellite remote sensing 
observations. 

3.3. Importance of factors that influence vegetation productivity 

We quantified the effects of phenology, LST, and SM on vegetation 
productivity using remotely sensed observations. From Fig. 4, the cor
relations between SIF and phenology, LST, and SM were significant (P <
0.01), with the strongest positive correlation coefficient between SIF and 
GSL (R = 0.539, P < 0.01; Fig. 4c). Moreover, we assessed the 
responding ability of SIF to SOS, EOS, GSL, LST, and SM using the 
optimal fingerprint (OFP) method. The response coefficients of SOS (β =
0.123, P < 0.01), GSL (β = 0.444, P < 0.01), LST (β = 0.190, P < 0.01) 
and SM (β = 0.295, P < 0.01) were significantly greater than 0 (Fig. 4f 
and Table S2), meaning they were suitable for attribution analysis. The 
GSL scale coefficient was the maximum, indicating the largest contri
bution to SIF, followed by SM and LST (Fig. 4f). The EOS scale coeffi
cient (a = -0.103) was<0 (Fig. 3f and Table S2), indicating that the effect 
on SIF changes remained confounded with internal variability and could 
not be clearly detected. We also quantified the effects of SOS, EOS, GSL, 
LST, and SM on NPP and attribution analysis, and the results showed 
consistency with SIF (Fig. S5 and Table S2), with the highest correlation 
coefficient between NPP and GSL (R = 0.612, P < 0.01; Fig. S5c) and the 

Fig. 2. Interrelationships among LST, vegetation phenology (SOS, EOS, and GSL), SM and effects on vegetation productivity. (a) Positive and negative impact re
lationships among LST, SM, SOS, EOS, GSL and vegetation productivity. The prefix “ +” indicates a positive effect, while “-” indicates otherwise. (b) Correlation 
coefficients of factors with each other. The absolute value of R greater than 0.456 indicates P < 0.05. 
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Fig. 3. Long-term trends of meteorology-hydrology, phenology and productivity observed by flux towers. (a) Ts trends; (b) SWC trends; (c) SOS trends; (d) EOS 
trends; (e) GSL trends; (f) GPP trends. Gray shaded bands indicate doubled standard deviation. The colors of the dots correspond to the colors of the vegetation types 
(DBF, ENF, GRA, and MF) in the legend. 

Fig. 4. The relationships among phenology, LST, SM and vegetation productivity from remote sensing data. (a) correlation coefficient between SOS and SIF; (b) 
correlation coefficient between EOS and SIF; (c) correlation coefficient between GSL and SIF; (d) correlation coefficient between LST and SIF; (e) correlation co
efficient between SM and SIF; (f) importance of SOS, EOS, GSL, LST, and SM on SIF assessed using the OFP method. LST, SM, and SIF are the annual means. The 
vegetation types include ENF, EBF, DNF, DBF, MF, CSH, OSH, WSA, SAV, GRA, WET, CRO, UBL, and CNV. 
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maximum scale coefficient of OFP attribution analysis (β = 0.489, P <
0.01; (Table S2). In summary, the analysis showed that earlier SOS, 
delayed EOS, and longer GSL could increase vegetation productivity, 
which was consistent with the study by Keenan et al. (2014). GSL was 
identified as the most important driver of vegetation productivity 
changes, followed by SM and LST. 

In addition, we used RDA to rank the significance of the effects of 
SOS, EOS, GSL, LST, and SM on vegetation productivity (SIF and NPP) 
(Table S4 and Fig. S6). The results showed that SIF and NPP responded 
consistently to each factor with a total explanation of 39.17% and 
43.17%, respectively. GSL, SOS, LST and SM were significant at the 0.01 
level, indicating their strongest effect on vegetation productivity (SIF 
and NPP) variation, with GSL having an explainable degree of up to 
29.1% and 37.67%, respectively, followed by SM (6.73% and 4.73%) 
and LST (2.73% and 0.97%). SOS and EOS explained no more than 0.5%. 
Thus, we could conclude that GSL was the most important factor 
contributing to vegetation productivity changes, followed by SM and 
LST. The results from the OFP method and RDA were highly consistent. 

We also quantified the effects of phenology, Ts, and SWC on vege
tation productivity from long-term FLUXNET data. As shown in Fig. 5, 
the correlation between GPP and SOS was negative (R = -0.509, P <
0.01). However, the correlation between GPP and EOS (R = 0.335, P <
0.01), GSL (R = 0.502, P < 0.01), Ts (R = 0.543, P < 0.01), SWC (R =
0.486, P < 0.01) were positive. Thus, advanced SOS and extended EOS 
and GSL corresponded to increased vegetation productivity. In addition, 
increased Ts and SWC are also responsible for enhanced vegetation 
productivity. The attribution analysis using OFP showed that GSL (β =
0.564, P < 0.01) extension was the most important factor for the in
crease in vegetation GPP (Fig. 5f and Table S3), followed by Ts (β =
0.453, P < 0.01) and SWC (β = 0.288, P < 0.01). However, the EOS scale 
coefficient (β = -0.247) was<0 (Fig. 5f and Table S3), indicating that the 
effect on GPP changes remained confounded with internal variability 
and could not be clearly detected. The analytical results based on flux 
tower data indicated that GSL was the most important driver of vege
tation productivity changes, followed by SWC and Ts. 

We further used RDA to rank the importance of the effects of SOS, 
EOS, GSL, Ts, and SWC on vegetation productivity (GPP) (Table S4 and 
Fig. S7). SWC explained the most of GPP (26%, P < 0.01), followed by Ts 

(18.5%, P < 0.01) and SOS (9.9%, P < 0.01). The RDA based on flux 
tower data revealed that SWC and Ts were the drivers of main vegetation 
productivity. The above findings from flux tower sites differ from the 
ones from remotely sensed observations. It might be mainly caused by 
the location of ground stations. For example, Piao et al. (2018) revealed 
that delayed EOS is responsible for the increase in vegetation carbon 
emissions, while Zhang et al. (2020) observed that it was mainly caused 
by the location of ground stations. 

3.4. Spatial patterns of the dominant drivers of vegetation productivity 

It is crucial to identify the dominant factors that cause changes in 
vegetation productivity. We used the OFP method to further study the 
dominant drivers of vegetation productivity changes at the pixel scale 
for SOS, EOS, GSL, LST, and SM. Our results showed that the percentage 
of positively influenced pixels (56.97% (SIF) and 58.70% (NPP)) of these 
factors on the dominant drivers of vegetation productivity at mid to high 
latitudes in the Northern Hemisphere were greater than the negative 
effects (43.03% (SIF) and 41.30% (NPP)) (Fig. 6). Meanwhile, the per
centage of positive effects pixels of SOS, EOS, GSL, and LST on vegeta
tion productivity were all greater than the negative effects (Fig. S8 and 
Fig. S9), except for SM, whose percentage of positive effects pixels on 
vegetation productivity (45.3% (SIF) and 42.2% (NPP)) were slightly 
weaker than the negative effects (54.7% (SIF) and 57.8% (NPP)) (Fig. S8 
and Fig. S9). 55% of pixels exhibited reduced SM, and reduced SM can 
limit vegetation productivity (Liu et al., 2020a; Reich et al., 2018). The 
above findings were consistent with the area and spatial distribution 
where SM played a negative role (Fig. 1b, Fig. S8f, and Fig. S9f). Thus, 
the interaction of several factors pointed to an overall increasing trend of 
vegetation productivity (Fig. 1). 

The analysis at middle and high latitudes showed that phenological 
change is a dominant driver of increased vegetation productivity, 
showing a spatially homogeneous effect (Fig. 6, Fig. S8, and Fig. S9). 
From 2001 to 2019, phenology changes dominated 65.78% (SIF) and 
62.02% (NPP) of pixels of the changes in vegetation productivity at mid 
to high latitudes in the Northern Hemisphere, respectively, where the 
percentage of positive effects pixels on vegetation productivity as the 
dominant driver reached 41.20% (SIF) and 40.42% (NPP), respectively. 

Fig. 5. The relationships among 
phenology, Ts, SM, and vegetation 
productivity from flux towers data. (a) 
correlation coefficient between SOS 
and GPP; (b) correlation coefficient 
between EOS and GPP; (c) correlation 
coefficient between GSL and GPP; (d) 
correlation coefficient between Ts and 
GPP; (e) correlation coefficient be
tween SWC and GPP; (f) importance of 
SOS, EOS, GSL, Ts, and SWC on GPP 
assessed using OFP method. Ts, SWC, 
and GPP are the annual means. The 
vegetation types include ENF, DBF, MF, 
and GRA.   
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Moreover, the proportions of positive effects pixels (51.4%-62.4%) of 
SOS, EOS, and GSL on vegetation productivity were greater than pro
portions of negative effects pixels (37.6%-48.6%) (Fig. S8 and Fig. S9), 
consistent with the results of existing studies (Keenan et al., 2014; 
Gonsamo et al., 2017). GSL was found to be the most important factor 
for changes in vegetation productivity (Fig. 6), consistent with the re
sults above (Fig. 4f and Fig. 5f). 

LST was the dominant driver of vegetation productivity accounting 
for 22.56% (SIF) and 25.02% (NPP) of the vegetated areas, with a 
mainly proportions of positive effect pixels (75.06% (SIF) and 79.79% 
(NPP)) (Fig. 6). The positive effects of LST were mainly distributed in the 
high-latitude regions, while the negative effects were mainly distributed 
in the low-latitude regions (Fig. S8d and Fig. S9d). The proportions of 
positive effect pixels of LST (68.4% (SIF) and 69.7% (NPP)) on vegeta
tion productivity at middle and high latitudes in the Northern Hemi
sphere was the largest area of each indicator (Fig. S8 and Fig. S9). 
However, GSL was the dominant driver of vegetation productivity for 
the largest area (Fig. 6). As rising temperatures at high latitudes could 
extend the length of the vegetation growing season and enhance pro
ductivity (Xu et al., 2013) and higher latitude ecosystem temperatures 
below the optimum temperature (Huang et al., 2019), positive tem
perature effects were mainly distributed in high latitude regions. 

Dang et al. (2022) revealed that temperatures played a greater role in 
vegetation productivity than SM at mid to high latitudes in the northern 
hemisphere. Our results showed that SM was the dominant driver of 
vegetation productivity for only 11.66% (SIF) and 12.96% (NPP) of the 
vegetated area, smaller than the area where the temperature was the 
dominant driver (Fig. 6). Moreover, the percentage of area positively 
affected by SM on SIF and NPP was 45.3% and 42.2%, respectively, 
smaller than the negative effect (54.7% and 57.8%) (Fig. S8 and Fig. S9), 
which was consistent with the area of SM reduction trend (55.61%) 
(Fig. 1b and i). Studies have shown that reduced SM decreases produc
tivity in vegetation (Liu et al., 2020a; Reich et al., 2018; Ngolo and 
Watanabe, 2022), explaining our observations that negative effects are 

dominant for SM on SIF and NPP. 
Keenan and Riley (2018) revealed a positive effect of growing season 

temperature on productivity in high-latitude ecosystems. The results 
from this study demonstrated that temperature did have a positive effect 
on vegetation productivity in high-latitude vegetation in the Northern 
Hemisphere (Fig. 6, Fig. S8, and Fig. S9). However, the attribution 
analysis showed that vegetation phenology changes were the dominant 
factor associated with changes in ecosystem productivity, possibly 
related to the reduced temperature dependence of productivity in 
Northern Hemisphere ecosystems (Piao et al., 2017). 

In addition, CO2 concentration (Keenan et al., 2021; Zhang et al., 
2022a), climate change (Xu et al., 2019) land use cover change (Yue 
et al., 2020) all affected vegetation productivity. We then used the 
CABLE model to capture the spatial pattern of increased GPP (Fig. 7). We 
employed different scenarios of CABLE model and means (i.e., multi- 
scenarios ensemble GPP of means, MSEM) to determine factors for the 
trend of increasing GPP. The trend of GPP derived from MSEM (Slope =
0.00036, R = 0.951, P < 0.01) was consistent with the trend obtained 
from satellite products and flux towers (Fig. 1, Fig. 3, and Fig. 7). 
Moreover, 84.26% of pixels of the MSEM-derived GPP showed an 
increasing trend (Fig. 7c), which was generally consistent with those of 
the remote sensing products vegetation productivity (SIF, GPP, and 
NPP), with a consistent spatial pattern of increase (Fig. 1f, g, h). The 
CABLE model successfully revealed that different scenarios captured the 
mechanisms of increased vegetation productivity over the last 20 years. 

The model experiments by changing forcing scenarios demonstrated 
that CO2 fertilization was the main contributor to the increase in GPP, 
while climate change and land use cover change had little contribution 
(Fig. 7b). In conclusion, compared to the S0 scenario GPP values, CO2 
fertilization increased GPP by 32.33%, followed by climate change 
(5.29%) and land use cover change (2.41%). Also, spatially relative to 
the S0 scenario GPP values, CO2 fertilization played a positive role in 
vegetation productivity for 99.82% of pixels (Fig. 7d), followed by 
climate change (87.13%) and land use cover change (56.01%) (Fig. 7e, 

Fig. 6. Spatial pattern of the dominant drivers of 
vegetation productivity changes. (a) The main driver 
of SIF, defined as the driver that contributes most to 
the change of SIF in each vegetation pixel; (b) the 
main driver of NPP, defined as the driver that con
tributes most to the change of NPP in each vegetation 
pixel; (c) the ratio of the area of vegetation photo
synthesis change that is mainly driven by each factor. 
The drivers include phenology (SOS, EOS, and GSL), 
LST, SM. Vegetation photosynthesis is represented by 
SIF and NPP. The prefix “+” indicates a positive effect 
on vegetation photosynthesis, while “-” indicates 
otherwise.   
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f). 
In addition, atmospheric nitrogen deposition can increase the 

sensitivity of vegetation productivity to climate change by reducing the 
stability of dominant species (Liu et al., 2019), which in turn affects 
vegetation productivity. Moreover, with continued warming, radiative 
limitation will increase, leading to a widespread radiative limitation in 
ecosystem productivity that can affect vegetation productivity (Zhang 
et al., 2020). And other factors not considered at the regional scale affect 
vegetation productivity, such as disturbances in tillage practices, irri
gation, pests and diseases, forest management, fire, urbanization 
(Zhuang et al., 2022a; Shao et al., 2021), and salinization (Zhuang et al., 
2022b), might be the reason for the mismatch between observed and 
attributed analyses of vegetation productivity changes. 

Finally, we should also consider the sensitivity, uncertainty and 
causality of drivers on vegetation productivity, while considering the 
nonlinear and spatial–temporal variation relationships between vege
tation productivity and drivers. First of all, we should carry out sensi
tivity and uncertainty analysis of multiple drivers to identify the key 
determinants affecting vegetation productivity changes to address the 
model/analysis uncertainty-sensitivity-correlation coupling problem 
(Pianosi et al., 2016). The variance method is available to investigate the 
variability generated by the variability of drivers on vegetation pro
ductivity to identify the major vegetation productivity drivers. Then, 
non-linearity between determinants and vegetation productivity is 
considered (Koch et al., 2009; Newbold et al., 2020). At present, 
convergent cross mapping, optimal information flow (OIF) (Li and 
Convertino, 2021), PCMCI (Runge et al., 2019), empirical dynamical 
modeling, and other machine learning models are able to account for the 
nonlinearities between vegetation productivity and driver interactions. 
Moreover, they may also have time lag problems (Guo et al., 2020). 
Therefore, it is important to predict ecosystem vegetation productivity 
with nonlinear models that consider time lags, based on the integration 
of determinants identified by sensitivity analysis. Finally, both vegeta
tion productivity and drivers vary in spatial and temporal terms (Zeng 

et al., 2022). Therefore, vegetation productivity can be analyzed as a 
function of the variables of the drivers, considering the joint probability 
distribution function or mean and variance, and the study refers to the 
variability of the drivers as a function of the vegetation productivity 
gradient. It is important to quantify the stability of ecological patterns of 
vegetation productivity gradients. This is because this enables the 
definition of potential steady states, where vegetation productivity does 
not change, critical points, and other potential unobserved states that 
need to be utilized to determine vegetation productivity. Therefore, we 
will further study these deficiencies in our future work. 

4. Conclusions 

Under the context of global climate change, it is essential to under
stand the mechanisms of vegetation productivity changes so that a better 
understanding of the impact of climate change on productivity in 
terrestrial ecosystems can be achieved. In this study, we quantitatively 
assessed the importance of phenology and environmental factors on 
vegetation productivity. Cross-validated results obtained from remotely 
sensed observations and flux towers data indicated that phenology was 
the dominant driver, despite the differences in the importance of tem
perature and SM between remotely sensed and flux tower observations. 
Vegetation productivity models considering vegetation phenology 
might further improve the assessment accuracy. 
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