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A B S T R A C T   

Soil organic carbon (SOC) stocks have profound effects on climate change, sustainable agricultural development, 
and environmental management. Our objectives were to propose a conceptual framework and quantify the 
impact of land use change (LUC) and agricultural management practices (AMPs) on SOC stocks. By comparison, 
we choose the Kriging-based spatial prediction model to estimate SOC stocks based on the field sampled soil data 
(depth of 0–30 cm) in 2005 and 2019. Film mulching, drip irrigation, and fertilizer application were selected to 
represent the regional AMPs. Our results indicate that SOC stocks increased by 12.7% in the Sangong river basin 
from 2005 to 2019. From the proposed conceptual framework, we notice that the transition between different 
land-use types may cause both losses (e.g., − 9.49 Gg C caused by expansion of construction land) and gains (e.g., 
+3 Gg C caused by the conversion of cultivated land to grassland) of SOC storage. Benefiting from improved 
AMPs (e.g., film mulching, drip irrigation, and fertilizer application), the “stable cultivated land” category 
contributes the most (+36.0 Gg C) to the growth of SOC stocks.   

1. Introduction 

Soil organic carbon (SOC) pool is the largest terrestrial reservoir of 
carbon (C) (Carvalhais et al., 2014), approximately twice the atmo
spheric C pool and about three times the terrestrial vegetation C pool 
(Dlamini et al., 2016). The fixation of atmospheric carbon by increasing 
the SOC pool is particularly important for mitigating the greenhouse 
effect and has become a hot spot and focus of current research in the 
field of climate change (Balesdent et al., 2018; Bradford et al., 2016). In 
farmland ecosystems, the SOC stocks decreases with increasing soil 
depth (Xie et al., 2007; Xu et al., 2011). Numerous investigations have 
been made on surface SOC with a focus on land use change (LUC) or 
agricultural management practices (AMPs) (Ramirez et al., 2020; 
Mbuthia et al., 2015; Sanderman et al., 2017; Wiesmeier et al., 2019; Bai 
et al., 2018). Most of the existing studies investigated the effect of LUC 
on SOC stocks (Don et al., 2011; Franco et al., 2020; Ren et al., 2020). A 
small number of existing studies investigated the effects of AMPs on SOC 
stocks (Baker et al., 2007; Dignac et al., 2017; Zhang et al., 2021). 

However, no existing study was designed to explore the combined ef
fects of AMPs and LUC on SOC stocks under the same framework. Hence, 
this study is critical for the agriculture and climate change communities 
to explore the combined effects of AMPs and LUC on SOC stocks by 
designing a conceptual framework.” 

Agricultural soil is subject to frequent anthropogenic disturbance 
during development, resulting in a stronger spatial variability of SOC 
than natural soils (Bai et al., 2020; Crystal-Ornelas et al., 2021; Bouasria 
et al., 2022). High-precision prediction of the spatial distribution of SOC 
stocks in agricultural soil is much more difficult than that in natural 
soils. As to now, the methods for predicting SOC stocks can be classified 
into 4 categories: (1) Soil type linkage method based on soil properties 
(Wu et al., 2018); (2) Geostatistical methods, such as inverse distance 
weighting (IDW), Tyson polygons, etc. (Nandan et al., 2019); (3) Mul
tiple linear regression method (Huang et al., 2015); (4) Machine 
learning methods, e.g., random forests (RF), support vector machines 
(SVM), decision trees, etc (Guo et al., 2021; Keskin et al., 2019; Morais 
et al., 2020). The soil type linkage method is suitable for areas with large 

* Corresponding author. 
E-mail address: shaozhenfeng@whu.edu.cn (Z. Shao).  

Contents lists available at ScienceDirect 

Soil & Tillage Research 

journal homepage: www.elsevier.com/locate/still 

https://doi.org/10.1016/j.still.2023.105716 
Received 7 August 2021; Received in revised form 24 March 2023; Accepted 31 March 2023   

mailto:shaozhenfeng@whu.edu.cn
www.sciencedirect.com/science/journal/01671987
https://www.elsevier.com/locate/still
https://doi.org/10.1016/j.still.2023.105716
https://doi.org/10.1016/j.still.2023.105716
https://doi.org/10.1016/j.still.2023.105716
http://crossmark.crossref.org/dialog/?doi=10.1016/j.still.2023.105716&domain=pdf


Soil & Tillage Research 231 (2023) 105716

2

spatial scales and relatively homogeneous soil types, but it does not 
reflect enough of the diversity of soil types (Lemma et al., 2021). The 
geostatistical method relies more on spatial correlation, and its ability to 
express spatial characteristics and prediction accuracy is poor in areas 
with complex scenarios and strong local variability (Lal, 2018). Multiple 
linear regression has a poor ability to characterize the nonlinear spatial 
distribution of SOC stocks (Bouasria et al., 2022). The prediction accu
racy of the machine learning algorithm model is strongly dependent on 
the spatial scale and sampling density, and the measurement error is 
huge in large-scale complex scenarios (Zhang et al., 2020). Therefore, 
the existing method needs to be improved to enhance the estimation 
accuracy. 

Existing studies have proved that LUC is one of the most important 
factors for SOC stocks (Artemyeva et al., 2021; Bai et al., 2020; Lizaga 
et al., 2019; Wang and Zhao, 2020). At the same time, changes in 
different land use types also affect the SOC storage, SOC components, 
and C cycle mechanisms (Li et al., 2022; Xiao et al., 2021; Xu et al., 
2022; Zhuang et al., 2022a). The positive or negative impact depends on 
the land use types before and after the changes. Among them, some 
conversion between different land use types (e.g., forests to cultivated 
land, cultivated land to construction land, etc.) may destabilize the 
aggregate stability of the soil, leading to a decreased impact on SOC 
stocks (Fujisaki et al., 2015; Liu et al., 2020; Li et al., 2021). The 
excessive disturbance caused by land use change (e.g., grassland to 
barren land, grassland to cultivated land, cultivated land to industrial 

and mining land, etc.) may increase soil erosion. The horizontal 
migration of SOC that occurs during soil erosion can significantly alter 
the distribution pattern of SOC in terrestrial ecosystems (Franco et al., 
2020; Damian et al., 2021; Zhang et al., 2021). Therefore, investigations 
on the impact of LUC on SOC stocks are in great need and can provide 
important guidance to the formation of major ecological policies and 
land resource allocation. 

This discovery has brought more attention to the importance of 
AMPs in regulating the C storage and C cycle of terrestrial ecosystems 
(Cooper et al., 2021; Sanaullah et al., 2020; Zhuang et al., 2022b). AMPs 
change SOC by affecting soil conditions (Dignac et al., 2017). He et al. 
(2021b) pointed out that different agronomic management plans have 
different effects on the distribution and stability of aggregation. For 
example, as the tillage intensities increase, SOC reserves decrease. In 
recent years, the AMPs in arid regions have undergone tremendous 
changes (Fu et al., 2015; Ming et al., 2021), mainly reflected in three 
aspects: 1) mulching farming, 2) drip irrigation, and 3) fertilizer appli
cation (Zhao et al., 2021). However, few efforts have been made to 
explore the comprehensive impact of these several AMPs on SOC stocks. 
The response mechanisms of AMPs to SOC stocks under the background 
of drastic LUC are largely unknown. 

If the effects of LUC and AMP on SOC were not explored clearly, it 
will be detrimental for administrators to improve the quality of cropland 
and enhance soil carbon sink. To fill the gap, we explore the combined 
effects of LUC and AMPs on SOC stocks in arid regions. The Sangong 

Fig. 1. (a) Location of Xinjiang Province in China (Boundary information was obtained from the Ministry of Natural Resources of China, Approve number: GS(2019) 
1682); (b) Location of the Sangong river basin in Xinjiang; (c) distribution of sampling points in the study area in 2019; and (d) slope map of the study area 
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river basin is chosen as the study area as it is a typical arid region 
characterized by the rapid transformation of agricultural management 
patterns and a large-scale farmland expansion (Hou et al., 2011). We 
improved the Kriging-based spatial prediction model to estimate SOC 
stocks based on the field sampled soil data (depth of 0–30 cm) in 2005 
and 2019 and propose a conceptual framework to quantify the impact of 
land use change (LUC) and agricultural management practices (AMPs) 
on SOC stocks. 

2. Materials and methods 

2.1. Study area and soil sampling 

The Sangong river basin in Xinjiang, China, is characterized by the 
landform pattern of mountain-plain-river-desert at 43◦09′N–45◦29′N 
and 87◦47′E–88◦17′E (Fig. 1). The area of cultivated land has increased 
from 96.4 km2 in 1949–680 km2 in 2019. It has a typical temperate 
continental climate, with the average annual temperature (1990–2018) 
greatly differing among different geomorphic units: 2.54 ◦C in the 
mountainous area, 6.62 ◦C in the central plain, and 7.21 ◦C in the 
northern desert area. The average annual precipitation of the whole 
basin is about 200 mm. The inter-annual variation of precipitation is 
relatively large, ranging from 100 mm to 340 mm. The average annual 
evaporation of this basin is about 1800 mm, where the northern desert 
presents 500 mm greater in average annual evaporation than that of the 
southern mountain area. The average annual runoff of surface water is 
9.84 × 107 m3, mainly coming from alpine glaciers and snowmelt. The 
surface water varies within a year, with summer runoff accounting for 
75% of the total runoff and spring runoff accounting for only 15%. 

According to soil types, vegetation types, and cultivated land recla
mation period, we arranged representative cultivated land sampling 
points on the high-resolution topographic map and selected a total of 62 
representative sampling points in the Sangong river basin (Fig. 1c). The 
soil samples were collected in May 2005 and May 2019. When sampling, 
the ridge roadsides, ditches, and micro-topography were avoided. A 
composite soil sample from each plot was collected by combining six 
randomly collected cores from soybean inter-row from 0 − 30 cm depth 
using a bucket-type auger of 5 cm diameter. The specific information of 
62 sampling points can be found in Table S1. 

2.2. Bulk soil analysis 

The content of SOC was determined by the "potassium dichromate 
oxidation-external heating" method (Mazzoncini et al., 2011). First, 
0.5 g sample was weighed and put into a hard test tube, and 0.1 g silver 
sulfate and 5 mL potassium dichromate standard solution (with pipette) 
were added. Then 5 mL concentrated sulfuric acid with a syringe was 
added and carefully rotated and shaken. The oil pan was heated to 
185 ◦C − 190 ◦C in advance, and the hard test tube with the sample was 
inserted into the wire cage rack and then put into the oil pan for heating. 
The temperature in the oil pan was controlled at 170 ◦C − 180 ◦C while 
the solution was kept boiling for 5 min. Finally, we took out the wire 
cage frame and put it in the test tube frame when the test tube was 
cooled. The solution with green color suggests that the amount of po
tassium dichromate is insufficient and should be redone. If the color of 
the solution is orange-yellow or yellow-green, we pour the digestion 
liquid in the test tube into a 150 mL Erlenmeyer flask. Then four drops of 
the o-phenanthroline indicator were added and titrated the remaining 
potassium dichromate with 0.2 mol/L ferrous ammonium sulfate stan
dard solution. We recorded the volume of ferrous ammonium sulfate 
solution when the color of the solution changed from orange-yellow to 
brownish-red. 

Wsoc = 0.800 × 5.0/V0 × (V0 − V) × 0.003 × 1.10 × m (1)  

where WSOC is the amount of SOC per unit weight of soil (g); 0.800 is the 

concentration of potassium dichromate standard solution (mol/L); 5.0 is 
the volume of potassium dichromate standard solution (mL); V0 is the 
volume of Fe(NH4)2⋅(SO4)2⋅6 H2O standard solution consumed by blank 
(mL); V is the volume of Fe(NH4)2⋅(SO4)2⋅6 H2O standard solution 
consumed by the sample (mL); 0.003 is the mill molar mass of 1/4 
carbon atom (g); 1.10 represents the oxidation correction coefficient; m 
is the weight of the sample (g). 

2.3. Estimation of SOC stocks 

SOC density refers to the quantity of SOC in a certain depth of soil per 
unit area. It is calculated by the following formula: 

Doc = Soc × γ × H × 10− 3 (2)  

where Doc is the SOC density (kg.m− 2); Soc is the SOC content (g.kg− 1); γ 
is the soil bulk density (g.cm− 3), determined by the ring knife method; H 
= 30 cm, which is the depth of surface soil in this study. 

The soil bulk density (γ) was measured by the Cutting Ring Method 
(Jiang, 2019). Soil γ is calculated by the formula: 

γ =
m × 100

V × (100 + W)
(3)  

where V is the volume of the ring knife (cm3); m is the weight of wet soil 
inside the ring knife (g); W is the water content of soil weight inside the 
ring knife (%). 

Further, we use the soil type method to estimate the surface SOC 
stocks (Lal, 2018). The formula is as follows: 

Poc =
∑n

i=1
Si × Doci (4)  

where Poc is the surface SOC stocks (Gg C); Si is the area of the ith soil 
patch (hm2); Doci is the carbon content of the ith soil patch (Gg C/hm2); n 
is the total number of patches. 

2.4. Kriging-based spatial prediction model for SOC stocks 

To improve the prediction accuracy, we introduce collaborative 
regionalization variables on the basis of the Kriging spatial prediction 
model. Collaborative regionalization variables refer to variables that 
have spatial and statistical correlations in the same spatial range (Yang 
et al., 2020). This study uses regression Kriging under the digital surface 
model (DSM) to create a spatial prediction map of SOC stocks. The ac
curacy of spatial prediction results can be improved based on the cor
relation between collaborative variables and SOC. The uncertainty test 
of the prediction results is carried out according to the standards stip
ulated by the GlobalSoilMap (GSM) project, which defines the uncer
tainty as the 95% prediction interval (PI): the true value is expected to 
occur 9 times out of 10, with a 1 out of 20 probability for each of the two 
tails. Reliable spatial prediction results of SOC stocks are expected to 
better benefit subsequent analysis (Shi et al., 2016). The co-Kriging 
prediction formula of three variables is as follows: 

SOC3,ck(x0) =
∑n1

i=1
λ1iZ1(x1i)+

∑n2

j=1
λ2jZ2(x2j)+

∑n3

k=1
λ3kZ3(x3k) (5)  

where SOC3,ck(x0) is the predicted SOC stocks at the sampling point; λ1i 
represents the weight of the sampling points involved in the prediction 
to the SOC stocks of the sampling points; Z1(x1i) refers to the measured 
value of SOC stocks at sampling point; λ2j is the weight of elevation 
involved in the prediction to the SOC stocks; Z2(x2j) represents the 
measured value of elevation; λ3k refers to the weight of slope or DSM 
involved in the prediction to the SOC content; Z3(x3k) represents the 
measured value of the slope or DSM; n1, n2, and n3 indicates the number 
of soil sampling points, elevation sampling points, and slope sampling 
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points, respectively. 

2.5. Accuracy evaluation 

In order to verify and compare the results of different forecasting 
methods, we use the cross-validation method to judge the performance 
of each forecasting model. The principle of the cross-validation method 
is to use the points around each measured point to predict the measured 
value, and compare the predicted value with the measured value itself 
(Nocita et al., 2014). In this paper, we use the mean absolute error 
(MAE) and root mean square error (RMSE) to evaluate the accuracy of 
the prediction results: 

MAE =
1
n
∑n

i=1
|Z(xi) − Z ′

(xi)| (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
[Z(xi) − Z ′

(xi)]

√

(7)  

where Z(xi) represents the measured value; Z′

(xi) refers to the predicted 
value; n is the number of verification points. 

2.6. A conceptual framework for exploring the joint impact of land-use 
changes and agricultural management practices on SOC stocks 

In this study, we propose a conceptual framework to explore the 
impact of land-use changes and agricultural management practices on 
the SOC stock. The proposed framework separates the impacts into 
contributions of land-use change (Contr.Luc), agricultural management 
practices (Contr.Amp), and residual factors (Contr.Res). We adopt a total 
least squares optimal fingerprinting approach that uses a generalized 
linear regression model to represent observed changes as a linear com
bination of signals. Contr.Luc represents the impact of the conversion 
between land use types. Contr.Amp induced by several agricultural 
management patterns (e.g., film mulching, drip irrigation, and fertilizer 
application) may promote or inhibit SOC stocks. In addition, the SOC 
stocks may be affected by other factors (e.g., crop species, planting 
system, etc.), which are captured by Contr.Res that represents the 
contribution of residual factors to the SOC stocks. 

ΔSOCp = Contr.Luc+Contr.Amp+Contr.Res (8)  

where ΔSOCp is the anomaly of the sequestration potential of SOC from 
2005 to 2019; Contr.Luc, Contr.Amp, and Contr.Res are the variations of 
SOC stocks caused by land-use changes, agricultural management 
practices, and residual factors. 

During the investigated period, the land use in the Sangong river 
basin has undergone drastic changes, with the area of cultivated land 
expanding rapidly. Meanwhile, the loss of cultivated land was notable, 
presumably due to urban expansion. To explain the impact of land-use 
changes on the SOC stocks, we divide this process into two parts (Eq. 9). 

Contr.Luc = ΔSOCp− crop− others +ΔSOCp− others− crop (9)  

where ΔSOCp− crop− others is the dynamics of SOC stocks caused by the 
conversion of other land use types to cultivated land; ΔSOCp− others− crop 

refers to the dynamics of SOC stocks due to the conversion of cultivated 
land to other land use types. 

Agricultural management practices affect the SOC stocks in the 
farmland ecosystem. Long-term cropping system experiments offer a 
great opportunity to understand the magnitude and direction of the 
sequestration potential change of SOC. In recent decades, the changes in 
agricultural management practices are mainly reflected in mulching 
planting, drip irrigation technology, and fertilizer application per unit 
area: 

Contr.Amp = Contr.Mulch+Contr.Drip+Contr.Fertilization (10)  

Contr.Mulch = SOCp− post− mulch − SOCp− pre− mulch (11)  

Contr.Drip = SOCp− post− drip − SOCp− pre− drip (12)  

Contr.Fertilization = SOCp− post− fertilization − SOCp− pre− fertilization (13)  

where Contr.Mulch, Contr.Drip, and Contr.Fertilization are the contribu
tions of mulching planting, drip irrigation technology, and fertilizer 
application per unit area to the shift of SOC stocks, respectively; SOCp- 

post-mulch and SOCp-pre-mulch are the average SOCp within the post-mulch 
and pre-mulch periods, respectively; SOCp-post-drip and SOCp-pre-drip 
represent the average SOCp within the post-drip irrigation and pre-drip 
irrigation periods, respectively; SOCp-post-fertilization and SOCp-pre-fertilization 
denote the average SOCp within the post-fertilization and pre- 
fertilization periods, respectively. 

3. Results 

3.1. Data quality 

SOC ranges from 0.929 g/kg to 21.7 g/kg in 2005. The average 
content of SOC in 2005 with 62 resample points is 7.16 g/kg (Table 1). 
In 2019, the average SOC is 8.20 g/kg, with an increase of 1.05 g/kg 
compared to 2005. In this study, we estimated the heterogeneity of 
variables based on the coefficient of variation (CV). The CV value in
dicates that the SOC data of the two periods are of moderate variation 
(50.8% in 2005 and 52.4% in 2019). According to the joint test of 
skewness and kurtosis, the surface SOC content in 2005 and its loga
rithm in 2005 conform to the normal distribution. In comparison, the 
surface SOC content in 2019 does not conform to the normal distribu
tion, but its logarithm conforms to the normal distribution. These results 
indicate the SOC data for 2005 and 2019 can be spatially interpolated 
via the Kriging-based model. 

3.2. Estimation, distribution, and dynamics of SOC stocks in 2005 and 
2019 

According to the spatial estimation results, Fig. 2a and Fig. 2b show 
the spatial distribution patterns of surface SOC content in the Sangong 
river basin in 2005 and 2019, respectively. In 2005, the SOC content 
ranged from 0.158 kg.m− 2 to 1.38 kg.m− 2, with an average level of 
0.473 kg.m− 2. The highest SOC stocks occurred in the southeast of the 
study area with a high elevation and abundant precipitation. In contrast, 
the lowest SOC stocks occurred in the northeast and west study area 
under a dry climate covered by barren land(Fig. 2a). The SOC content 
fluctuated in the range of 0.168 kg.m− 2 to 1.338 kg.m− 2, with an 
average level of 0.533 kg.m− 2 in 2019. The highest SOC stocks occurred 
in the central and southeast Sangong River Basin, covered by farmland 
and with relatively complete water conservancy facilities. In compari
son, the lowest SOC stocks were concentrated in the northeast and 
northwest study area covered by barren land (Fig. 2b). 

In general, the surface SOC content had seen a notable increase from 
2005 (0.473 kg.m− 2) to 2019 (0.533 kg.m− 2) in the study area. It can be 
seen from Fig. 2c that areas where the surface SOC content decreases are 
mainly distributed in the eastern part of the Sangong river basin, ac
counting for about 25.5% of study area. The areas where the surface SOC 
content increased mainly occurred in the central and western of the 
study area, accounting for approximately 74.5% of the area of the study 
area. From 2005–2019, the surface SOC storage in the Sangong river 
basin increased by 50 Gg C (524 Gg C in 2005, 574 Gg C in 2019, 1 Gg C 
= 109 g C), a net increase of 9.5%. The detailed reasons are discussed in 
Sections 3.3 and 3.4. 
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3.3. Contribution of land-use change to SOC stocks 

The spatial-temporal distribution of each land use type in 2005 
(Fig. 3a), 2010 (Fig. 3b), 2015 (Fig. 3c), and 2019 (Fig. 3d) is presented. 
The transfer matrix of land use patterns was obtained by overlaying the 
land use dataset from 2005 to 2019 (Table 2). The statistical results 
show that land use patterns have undergone tremendous changes. We 
noticed two phenomena. First, cultivated land encroached a large 
amount of grassland (103 km2), accounting for 99.5% of the increased 
cultivated land during 2005–2019. This phenomenon can be explained 
by the pressure of population and agricultural economy, potentially 
bringing huge challenges to water resources and environmental security 
in arid regions. Second, the area of cultivated land has decreased by 
37.1 km2, with 41.9% of them converted into construction land 
(Table 2). These cultivated land were found concentrated around the 
urban fabric, suggesting that the process of urbanization poses a serious 
threat to farmland quality and food security. In addition, 21.4 km2 of 
cultivated land was converted into grassland, accounting for 57.8% of 
the lost cultivated land. This phenomenon is caused by fallow and 
responding to the government’s policy of "returning cultivated land to 
woodland and grassland". The above results revealed the important role 
of human activities in driving the changes in land use patterns. 

In 2005, the order of SOC pool of each land use type follows: 
grassland (211 Gg C) > cultivated land (196 Gg C) > barren land (78.1 
Gg C) > construction land (16.2 Gg C). The order of SOC pool for each 
land cover type in 2019 follows: cultivated land (278 Gg C) > grassland 
(186 Gg C) > barren land (90.1 Gg C) > construction land (27.5 Gg C) 
> woodland (1.54 Gg C). Among them, the surface SOC of stable culti
vated land received the most increased amount by 36.0 Gg C (Table 3). 
The surface SOC in stable grassland and stable barren land increased by 
18.6 Gg C and 13.4 Gg C, respectively. The surface SOC of stable con
struction land decreased by 1.05 Gg C during the investigated period. 
Compared with stable land use types, the mutual conversion between 

different land use types is expected to have more complex effects on 
surface SOC stocks. The conversion of grassland to construction land 
(− 4.77 Gg C) and cultivated land to construction land (− 4.54 Gg C) 
caused the highest SOC loss among all land-use conversions. Meanwhile, 
the conversion of cultivated land to grassland (+3 Gg C) also has a 
positive impact on SOC stocks. In contrast, the conversion of grassland to 
cultivated land led to the decrease of surface SOC stocks by 10.1 Gg C. 

3.4. SOC stocks of cultivated land in response to agricultural management 
practices 

It can be seen from Table 3 that the decreased cultivated land caused 
a large amount of surface SOC loss (− 7.56 Gg C). The above results also 
confirm that land use changes are one of the important reasons for 
changes in soil C sources and C sinks. What surprised us is the fact that 
the shallow SOC of the stable cultivated land in the Sangong river basin 
increased by 36 Gg C (177 Gg C in 2005 and 213 Gg C in 2019) from 
2005 to 2019, a relative increase of 20.4%. In most cases, stable culti
vated land is hardly affected by land-use changes. Therefore, we further 
explored the impact of agricultural management practices on surface 
SOC stocks from three aspects, i.e., film mulching rate, drip irrigation, 
and fertilizer application. First, the film mulching rate in our study area 
increased from 31.1% in 2005 to 60.1% in 2019. Plastic film mulching 
has a highly promoting effect on the stability of surface soil aggregates. 
Aggregates are the main place where organic carbon exists, and the 
improvement of its stability is beneficial to SOC stocks (Nabiollahi et al., 
2018). Second, changes in soil moisture content and distribution caused 
by changes in irrigation methods can also be responsible for the increase 
of SOC stocks (Qiu et al., 2022). In 2019, the area of drip irrigation 
farmland accounted for 58.7% of the total farmland, while this number 
was only 40.1% in 2005. Third, it is widely recognized that reducing the 
usage of chemical fertilizer and increasing fertilizer efficiency can pro
mote SOC stocks. The fertilizer application in the Sangong river basin 

Table 1 
SOC content of the surface soil (0–30 cm) in 2005 and 2019.  

Year Parameter Minimum (g/kg) Maximum (g/kg) Average (g/kg) Standard Deviation Coefficient of Variation (%) Skewness Kurtosis 

2005 SOC  0.929  21.7  7.16  3.63  50.8  0.659  0.317 
Logarithm of SOC  -0.032  1.34  0.791  0.250  31.6  -0.181  0.483 

2019 SOC  2.57  21.1  8.20  4.30  52.4  0.836  0.216 
Logarithm of SOC  0.410  1.32  0.853  0.233  27.3  -0.078  -0.666  

Fig. 2. Distribution of SOC content in 2005 (a), 2019 (b), and the dynamics of SOC content from 2005 to 2019 (c).  
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decreased from 252 kg/hm2 to 175 kg/hm2 during the investigated time 
period. The reduction of fertilizer application enhances the soil carbon 
sequestration capacity by reducing the cumulative mineralization 
amount and cumulative mineralization rate of SOC. From the above 
analysis, we believe that the increase in film mulching rate, the increase 
of drip irrigation area, and the reduction of fertilizer application jointly 
promoted the increase in surface SOC stocks in our study area. 

4. Discussion 

4.1. Verification and uncertainty of estimation results 

This study optimizes the spatial prediction of SOC content via the 
Kriging-based model to select variables and assess the uncertainty of the 
forecast results. The Kriging-based gives the model parameters based on 
the covariates with the highest confidence and provides a measure of 
uncertainty. The prediction statistics indicate low uncertainty in the 
training dataset in 2005 and 2014 (significance level at 0.01) (Table 4). 
The RMSE (0.65 in 2005 and 0.67 in 2019) and MAE (0.39 in 2005 and 

Fig. 3. Distribution of land use types in 2005 (a), 2010 (b), 2015 (c), and 2019 (d).  
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0.41 in 2019) corroborate this assertion, presenting small differences in 
2005 and 2019. Compared with the training dataset, the RMSE (2.38 in 
2005 and 2.71 in 2019) and MAE (1.42 in 2005 and 1.67 in 2019) in the 
validation dataset show greater changes, indicating increased uncer
tainty in the prediction results have increased (significance level at 
0.01), which can be explained by the small number of samples used for 
verification. Table 5. 

Different models tend to present great disparity in the prediction 
accuracy of SOC content between different soil depths (Batjes, 2016). 
Gomes et al. (2019) and Taguas et al. (2021) found that Random Forests 
(RF) have the best performance, compared with SVM (Support Vector 
Machines), Cubist, and GLM (Generalized Linear Models) in predicting 
SOC stocks at all depths (0–5, 5–15, 15–30, 30–60, and 60–100 cm) in 
Brazil. He et al. (2021a) showed that the prediction accuracy of SOC 
stocks in the soil leaching layer (0–30 cm) based on the digital soil 
mapping method (MAE = 1.29, and RMSE = 1.99) is lower than that of 
traditional prediction methods (MAE = 0.79, and RMSE = 0.94) in 
Jiyuan City, China. Hence, the application of predictive models should 
follow the principle of parsimony – Occam’s razor – suggesting that the 
best model can explain the same phenomena using fewer variables 
without loss of performance (Castaldi et al., 2019; Guo et al., 2019). We 
argue that the selection of spatial prediction models should consider the 
balance between model prediction capability and training costs. 

4.2. Influencing mechanisms of land-use changes on surface SOC stocks 

Many studies have proved that land use types have different impacts 
on surface SOC stocks, and the conversions between land use types can 
modify the micro-ecological environment of the soil, thereby affecting 
the physical and chemical properties of the soil and affecting the dis
tribution of soil aggregates (Abera et al., 2021; Al-Hanbali et al., 2021; 
Dvornikov et al., 2021). Taking the surface soil (0–30 cm) in this study 
area in 2019 as an example, the SOC content of cultivated land is the 
highest (0.64 kg/m− 2), while the SOC content of other land use types is 
ranked as follows: woodland (0.54 kg/m− 2) > grassland (0.53 kg/m− 2) 
> barren land (0.42 kg/m− 2) > construction land (0.37 kg/m− 2). The 
study carried out by Don et al. (2011) showed that the SOC of different 
land use types in the tropics follows: primary forest > secondary forest 
> grassland > cropland > perennial crops. The discrepancy of SOC 
stocks of land use types between our studies and previous studies can be 
attributed partially to (1) the different land use classification systems 
and (2) the different geographical locations of the investigated areas. 

This study proves that land-use changes have a great contribution to 
SOC stocks. The expansion of construction land is the main cause of SOC 
loss. For example, the occupation of cultivated land by construction land 
caused a reduction of SOC by 4.54 Gg C, and the occupation of grassland 
by construction land caused a reduction of SOC by 4.77 Gg C. These 
results are partly consistent with existing efforts. For example, Jost et al. 
(2021) suggested that the temporal changes in SOC stocks led to the 
most rapid losses for land-use changes from grassland to cropland in the 
Mostviertel region. Similarly, Balkovic et al. (2020) found that land use 
change towards cropland negatively affects SOC stocks in Slovakia. We 
believe the inconsistency in findings can be explained by the study area 
discrepancies. For example, a large area of desertified sparse grassland is 
similar to barren land in our study area, leading to grassland soil not 
having great aggregate stability and microbial communities. Therefore, 
diverging conclusions might result from different analytical procedures 
and scales, assumptions on climate change, and other regional differ
ences in natural and socio-economic drivers of SOC dynamics. 

Table 2 
Transfer matrix of land use patterns between 2005 and 2019 (km2).  

Year Patterns 2019 

WOO GRA WAT CON BAR CUL Total Decrease 

2005 WOO  0  0  0  0  0  0 0 0 
GRA  2.84  326  1.13  14.0  0  103 447 121 
WAT  0  2.48  13.6  0  0  0 16.1 2.48 
CON  0.01  0  0  29.7  0  0.52 40.2 0.53 
BAR  0  0  0  3.70  213  0 217 3.70 
CUL  0  21.4  0.14  15.5  0  333 370 37.1 
Total  2.85  350  14.9  72.9  213  436 1090 \ 
Increase  2.85  23.9  1.27  33.2  0  103 \ \ 

Note: WOO, woodland; GRA, grassland; WAT, water body; CON, construction land; BAR, barren land; CUL, cultivated land. 

Table 3 
Mean absolute and relative SOC stocks changes for different land-use change 
types.  

Land-use 
change types 

SOC density 
（kg/m− 2） 

Area 
(km2) 

SOC stocks 
（Gg） 

SOC 
dynamics 
(Gg) 

2005 2019 2005 2019 

Stable GRA  0.47  0.53  326  153  173  19.6 
Stable CON  0.40  0.37  39.7  15.9  14.7  -1.19 
Stable BAR  0.36  0.42  213  76.7  89.5  12.8 
Stable CUL  0.53  0.64  333  177  213  36.6 
GRA to WOO  0.45  0.54  2.84  1.28  1.53  0.26 
GRA to CON  0.67  0.33  14.0  9.38  4.62  -4.76 
GRA to CUL  0.46  0.56  103  57.5  47.2  -10.3 
BAR to CON  0.42  0.37  3.70  1.55  1.37  -0.19 
CUL to GRA  0.66  0.52  21.4  11.2  14.2  3.00 
CUL to CON  0.64  0.34  15.5  9.95  5.28  -4.66 
Other types  2.40  2.35  4.28  10.3  10.0  -0.24 
Study area  0.47  0.53  1077  524  574  50 

Note: WOO, woodland; GRA, grassland; CON, construction land; BAR, barren 
land; CUL, cultivated land. 

Table 4 
Performance of the Kriging-based model to predict the spatial distribution of 
SOC content.  

Year Dataset Types R2 PCC RMSE MAE n 

2005 Training Dataset  0.967 0.983**  0.65  0.39  42 
Validation Dataset  0.814 0.705**  2.38  1.42  20 

2019 Training Dataset  0.956 0.978**  0.67  0.41  42 
Validation Dataset  0.755 0.673**  2.71  1.67  20 

Note: PCC, Pearson Correlation Coefficient; RMSE, Root Mean Squared Error; 
MAE, Mean Absolute Error. 

Table 5 
Comparison of prediction models using the validation data in 2019.  

Models R2 PCC MAE RMSE 

IDW  0.573 0.491*  3.52  4.38 
Spline  0.661 0.575*  2.74  3.86 
SVM  0.732 0.658**  1.91  2.98 
RF  0.709 0.626**  2.17  3.22 
This study  0.755 0.673**  1.67  2.71 

Note: IDW, Inverse Distance Weight; SVM, Support Vector Machine; RF, 
Random Forest; PCC, Pearson Correlation Coefficient; RMSE, Root Mean 
Squared Error; MAE, Mean Absolute Error. 
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4.3. Advances in agricultural management practices are expected to 
increase the sequestration potential of surface SOC 

In the process of analyzing the impact of land-use changes on surface 
SOC stocks, we noticed that the increase of SOC in “stable cultivated 
land” has the greatest contribution to SOC storage in the Sangong river 
basin. The results indicate the SOC of “stable cultivated land” increased 
by 36.0 Gg C from 2005 to 2019, accounting for 54.9% of the increase of 
SOC stocks in the study area. This result confirms that changes in 
farmland soil carbon pool can be adjusted for long-term or short-term 
through manual management. This study provides an important refer
ence that supports the "four-thousandth plan" (Soussana et al., 2019) 
from the French Minister of Agriculture at the 21st United Nations 
Climate Change Conference. This plan states that the global SOC storage 
at a depth of 2 m increases by four thousandths every year, which can 
offset the global fossil fuel carbon emissions in that year; the global SOC 
storage of 1 m depth soil increases by four thousandths every year, 
which can offset the net carbon dioxide emissions that were deducted 
from the carbon sinks of terrestrial ecosystems and ocean carbonization 
in that year (Noulekoun et al., 2021). The proposal of this plan reflects 
the importance of the soil carbon pool in the global carbon cycle system, 
and its realization depends on the positive contribution of the agricul
tural soil carbon pool (Corbeels et al., 2019). 

We guess that the contribution from “stable cultivated land” to SOC 
storage can be explained by the advances in agricultural management 
practices, a hot topic in the current research on SOC (Guevara et al., 
2018; Jin et al., 2021). Our study indicates that film mulching, drip 
irrigation, and reducing the application of fertilizer application can have 
a positive impact on the SOC sequestration capacity. Existing efforts 
mostly focused on the impact of farming methods on SOC stocks in 
different study areas (Lavallee et al., 2020; Loke et al., 2021; 
Martinez-Mena et al., 2020). Despite these efforts, however, we indicate 
that investigations on the impact of agricultural management practices 
on SOC stocks are still insufficient, especially in arid regions. Agricul
tural management plans such as film mulching, drip irrigation, and the 
application of fertilizer should receive more attention, as they can 
gradually change the management model of arid agriculture and are 
expected to determine the future development of agriculture in arid 
areas. 

5. Conclusion 

In this study, we investigated the joint impact of land-use changes 
and agricultural management practices (i.e., film mulching, drip irri
gation, and the application of fertilizer) on surface SOC stocks. We 
collected soil sample data to estimate surface SOC storage in the San
gong river basin in 2005 and 2019. We derived the spatiotemporal dy
namics of SOC stocks and designed a conceptual framework to explore 
the positive or negative effects of land-use changes and agricultural 
management practices on surface SOC stocks. The spatiotemporal vari
ations of estimation results indicate a huge jump in SOC stocks from 
2005 (516 Gg C) to 2019 (582 Gg C). Land-use changes caused both 
positive and negative impacts on SOC storage dynamics: the conversion 
of cultivated land to grassland (+3 Gg C) also has a positive impact on 
SOC stocks, while the expansion of construction land led to a decline in 
SOC stocks by − 9.49 Gg C. The substantial increase in SOC stocks in 
stable cultivated land can be attributed to the advances in agricultural 
management practices. The results of this study suggest that short-term 
adjustments to agricultural carbon pools can effectively increase the 
carbon sequestration capacity at the regional scale. Our results are ex
pected to benefit the “Carbon Neutrality” of China and planners in better 
managing agricultural land. Although the results of this study are spe
cific to the Sangong river basin, the conceptual and methodological 
design in this study can be adapted to other regions to explore the im
pacts of land-use changes and agricultural management practices on 
SOC stocks. 
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