
Neural Networks 143 (2021) 400–412

a

b

c

d

e

t
p
i
A
q
o
c
F
2
e
a
n

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Enhanced image prior for unsupervised remoting sensing
super-resolution✩

Jiaming Wang a, Zhenfeng Shao a,∗, Xiao Huang b, Tao Lu c, Ruiqian Zhang d, Jiayi Ma e

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, China
Department of Geosciences, University of Arkansas, Fayetteville, AR, 72701, USA
Hubei Key Laboratory of Intelligent Robot, School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
The School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, 430079, China
The Electronic Information School, Wuhan University, Wuhan, 430079, China

a r t i c l e i n f o

Article history:
Received 27 February 2021
Received in revised form 26 April 2021
Accepted 3 June 2021
Available online 18 June 2021

Keywords:
Latent space
Satellite imagery
Unsupervised learning
Prior enhancement
Super resolution

a b s t r a c t

Numerous approaches based on training low-high resolution image pairs have been proposed to
address the super-resolution (SR) task. Despite their success, low-high resolution image pairs are
usually difficult to obtain in certain scenarios, and these methods are limited in the actual scene
(unknown or non-ideal image acquisition process). In this paper, we proposed a novel unsupervised
learning framework, termed Enhanced Image Prior (EIP), which achieves SR tasks without low/high
resolution image pairs. We first feed random noise maps into a designed generative adversarial
network (GAN) for satellite image SR reconstruction. Then, we convert the reference image to latent
space as the enhanced image prior. Finally, we update the input noise in the latent space with a
recurrent updating strategy, and further transfer the texture and structured information from the
reference image. Results on extensive experiments on the Draper dataset show that EIP achieves
significant improvements over state-of-the-art unsupervised SR methods both quantitatively and
qualitatively. Our experiments on satellite (SuperView-1) images reveal the potential of the proposed
approach in improving the resolution of remote sensing imagery compared with the supervised
algorithms. Source code is available at https://github.com/jiaming-wang/EIP.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, remote sensing satellites that enable uninterrupted
arget observation have drawn widespread attention in various
ractical applications. Compared with satellites that obtain static
mages (e.g., the Jilin-1, He, He, Mei, & Hu, 2019 and Zhuhai OVS-1
/B, Cao et al., 2018), high temporal satellites are able to ac-
uire time-series images, facilitating the continuous monitoring
f moving targets. Such satellites have a wider range of appli-
ations, including extraction of urban impervious surfaces (Shao,
u, Li, Altan, & Cheng, 2019), land cover classification (Lv et al.,
018), event detection (Gu, Wang, Jin, & Gao, 2020), and resource
xploration (Li, Shao, Zhang, Huang, & Zhang, 2021). It is widely
cknowledged that optical remote sensors own the contradictory
ature between spatial and spectral resolution. In addition, due
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to limitations in bandwidth and hardware cost, the spatial res-
olution of satellites with a high temporal resolution often fails
to meet the demand of high precision applications that require
precise monitoring. Therefore, improving the spatial resolution
of satellite images with large compression ratios has become an
urgent issue in remote sensing applications.

One effective method to improve spatial resolution is to em-
ploy longer focal ratios or equip charge-coupled devices (CCD)
with a smaller pixel sizes and increased pixel density (Merino
& Nunez, 2007). However, both methods require renovations of
orbital platforms, which is often costly. Another solution is to
implement super-resolution (SR) that aims to reconstruct the
high resolution (HR) image from observed low resolution images
(LR) (Park, Park, & Kang, 2003). In real-world remote sensing
scenarios, SR problems are characterized by the following proper-
ties (Haut et al., 2018): (1) HR video images are often unavailable;
(2) HR image datasets that share the same content with LR video
images widely exist and can serve as a good reference (Ref); (3)
because of the different sensors and imaging band, the imaging
environment greatly differs between the LR and Ref-HR images
(more details at Section 2.3).

Existing supervised SR methods often generate SR images/

patches from the prior information provided by LR/HR pairs. The
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evelopment of machine learning greatly promotes the progress
f SR. The supervised deep-learning-based SR methods achieve
xcellent performance via the innovation of networks, e.g.., en-

hanced deep residual networks (Lim, Son, Kim, Nah, & Lee, 2017),
residual dense network (Zhang, Tian, Kong, Zhong, & Fu, 2018b),
non-local (Mei et al., 2020), and attention mechanism (Dai, Cai,
Zhang, Xia, & Zhang, 2019; Niu et al., 2020). The rationale of
these algorithms can be summarized as follows: a deep learning
model is trained to learn the mapping between the corrupted LR
images (degraded from their original versions) and corresponding
HR ones via a convolutional neural network (CNN). Based on
these methods, reference-based image super-resolution (RefSR)
methods, another research hotspot in recent years, introduce
additional information from a reference image, such as Dong,
Zhang, and Fu (2021), Yue, Zhou, Jiang, Yang, and Hou (2021).
The superior performance of supervised learning substantially
depends on the pixel-by-pixel supervision of the ground truth.
Although these methods are intended to obtain deep features
from image prior information, HR training examples needed to
provide such information are difficult to obtain, due to the cost
constraints and hardware limitations (Haut et al., 2018). In addi-
tion, despite the establishment of mapping functions between LR
and HR images, such models are only suitable for ideal degrada-
tion models (Bicubic kernel of simulated the degradation model),
and their performance is found rather limited in actual scenes due
to the unknown or non-ideal acquisition processes (Levin, Weiss,
Durand, & Freeman, 2009; Shocher, Cohen, & Irani, 2018; Soh,
Cho, & Cho, 2020).

In light of the aforementioned limitations of supervised SR, un-
supervised SR, an approach to reconstruct images without ground
truth, has received more attention in recent years. To exploit
the prior structure in an image, these studies (Haut et al., 2018;
Soh et al., 2020; Ulyanov, Vedaldi, & Lempitsky, 2018) generate
high-resolution images from random noises or LR images via a
generative adversarial network (GAN), where fixed input noise
tends to cause the model to fall into local optimum (more details
in Section 4). However, recovering high-frequency information,
especially information regarding the edge and texture, from the
existing image prior remains a difficulty for unsupervised SR
methods (Lempitsky, Vedaldi, & Ulyanov, 2018).

Inspired by the development of RefSR, we intend to explore
the potential of unsupervised reference-based strategies to over-
come the aforementioned obstacles. We propose a novel unified
framework, termed Enhanced Image Prior (EIP), to solve SR tasks
in an unsupervised manner. The designed EIP consists of three
major components: (1) a generator, (2) a reference feature ex-
tractor, and (3) a recurrent updater. For image generation, we
adopt a deep GAN to connect shallow features and deep features.
The proposed method applies an encoder–decoder model with
spatial transformer networks (Jaderberg, Simonyan, Zisserman,
& Kavukcuoglu, 2015) to learn the transformer parameters that
facilitate the alignment between LR images and the reference HR
image (Ref-HR), which is a necessary step due to their discrepan-
cies introduced from different satellite perspectives. The adopted
GAN model uses the noise map as input. The feature map of the
reference image is further transformed into the latent space as an
enhanced image prior for updating the input noises. We further
conduct extensive experiments to demonstrate the superiority of
the proposed framework. The experimental results suggest that
the proposed method can obtain more realistic images (Chen
et al., 2016) and outperforms many state-of-the-art unsupervised
algorithms.

The main innovative contributions of this paper are three
folds:
401
1. To our best knowledge, the proposed method is the first
unsupervised SR approach that takes advantage of simi-
lar
Ref-HR images as the reference. Even without pixel-by-
pixel supervision, high-frequency information from Ref-HR
images can be translated into LR domains for textured
generation, achieving great performance compared with
other state-of-the-art unsupervised SR methods.

2. We propose a novel model that transforms the refer-
ence into a latent space as the enhanced image prior
via a recurrent update strategy. Our model demonstrates
stronger robustness and achieves global optimization with-
out falling into local optimization.

3. We test the proposed method on the SuperView-1 video
satellite images, a real-world scenario without ground
truth, and validate the effectiveness and universality of the
proposed method qualitatively and quantitatively. We find
that the proposed unsupervised EIP framework even
outperforms selected supervised SR algorithms.

The remainder of this paper is organized as follows. Section 2
provides a brief review of related works on satellite image super-
resolution, single image super-resolution, and reference-based
image super-resolution. Section 3 describes the proposed method
in detail. Sections 4 and 5 report the experimental results and
ablation studies, respectively. Section 6 concludes the study.

2. Related work

In this section, we briefly review the single image super res-
olution (SISR). Specifically, we focus on outlining existing works
of unsupervised SR and RefSR.

2.1. Supervised single image super resolution via deep learning

Inspired by deep learning theories, CNNs received much atten-
tion in computer vision tasks (Wang et al., 2021; Xu, Ma, Jiang,
Guo, & Ling, 2020) in recent years. Many CNN-based SISR methods
have been developed, achieving decent improvements in the SR
domain. The CNN-based SISR method was first proposed by Dong,
Loy, He, and Tang (2016), who constructed a non-linear mapping
function of LR and HR images/patches with an end-to-end three-
layers CNN framework, opening up a new avenue in SR tasks. Kim,
Lee, and Lee (2016) proposed a very deep CNN network with skip
connection, providing stable and fast convergence to avoid the
disappearance of the gradient. Further, ESPCNN (Shi et al., 2016)
replaced the up-sampling version of input LR patches with the
subpixel convolution layer to reduce the checkerboard artifact.
With the success of the residual block in recognition tasks (He,
Zhang, Ren, & Sun, 2016), various works (Cao, Yao, & Liang, 2020;
Lim et al., 2017; Liu & Cao, 2020; Zhang et al., 2018b) have
focused on designing deeper networks and combining multi-
level feature maps to fully exploit the hierarchical features. For
example, the attention mechanism was proposed to improve the
CNN performance for various tasks. Zhang et al. (2018) developed
a deep residual channel attention network (RCAN) to capture
the adaptively re-scale channel-wise features. In the most recent
efforts, Guo et al. (2020) introduced a dual regression scheme by
introducing additional supervision.

Recently, Luo, Zhou, Wang, and Wang (2017) improved the
SR performance for satellite images by proposing a mirroring
reflection method that considers HR satellite video data to avoid
the loss of border information in images. Lu, Wang, Zhang, Wang,
and Jiang (2019) developed a framework to simulate recep-

tive fields in varying sizes by fusing multi-scale information
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n the residual domain, which effectively enhances the high-
requency information. Jiang et al. (2018) proposed a deep distil-
ation recursive network to extract features through the addition
f rich interactive links in and between multiple-path units in
ach ultra-dense residual block. Jiang et al. (2019) generated
lean and real image details by proposing a GAN-based edge-
nhancement method, consisting of an ultra-dense sub-network
nd an edge-enhancement sub-network. Lei, Shi, and Zou (2019)
nvestigated a pair of images to better discriminate its inputs
or the low-frequency regions in a remote sensing image. Zhang,
hen, Ma, and Zhang (2020) introduced the varying saliency
aps of different areas as the additional prior information and
onstraints. Geng, Liu, Wang, and Sun (2021) proposed a shearlet-
ransform-based residual network for an optimal sparse approx-
mation. Despite the great performance of the aforementioned
ethods, they are intrinsically designed for supervised SR tasks

hat require known HR/LR pairs and their performances largely
ely on massive training samples.

.2. Unsupervised single image super resolution

Despite that efforts have been made to solve SR problems
ith a known imaging acquisition process, few works tried to
olve SR problems without ground truth. In traditional unsuper-
ised SR, searching self-examples and reconstruction (Freedman
Fattal, 2011; Huang, Singh, & Ahuja, 2015) are two common

trategies. Michaeli and Irani (2013) presented an algorithm that
s able to estimate the optimal blur kernel. However, the shal-
ow networks usually failed to recover high-frequency informa-
ion, especially in non-linear scenarios, leading to their limited
erformance.
From the perspective of training mode, existing unsupervised

R methods can be divided into zero-shot and data-based meth-
ds. However, CinCGAN (Yuan et al., 2018), a representative of the
ata-based unsupervised SR methods, requires on a large amount
f training data to obtain superior performance, which cannot
e directly applied to the zero-shot scenes. Haut et al. (2018),
or the first time, proposed an unsupervised hourglass model
o super-resolved LR remote sensing images from random noise
n a zero-shot framework. DIP (Ulyanov et al., 2018) exploited
he prior information in LR images and generated SR. Recently
tudies (Assaf Shocher, 2018; Soh et al., 2020) focused on down-
ampled kernel learning for internal learning in the actual scene.
SISResNet (Prajapati et al., 2020) employed a subnetwork with
he capability of conducting quality assessments to encourage the
etwork to produce texture with excellent perceived quality. Ahn,
oo, and Sohn (2020) built a set of pseudo pairs and cast the orig-
nal unsupervised task into a supervised learning task. Despite the
bove efforts, recovering the missing high-frequency information,
specially information regarding the edge and texture, remains a
hallenging task.

.3. Reference-based image super-resolution

Different from SISR methods, RefSR algorithms render more
ccurate and realistic details, which are transferred from the
eference images. A reference image is similar to an LR image in
erms of content but different in focal lengths and shot perspec-
ives. Video frames (Liu & Sun, 2011), multi-view images (Zhu,
hang, & Yuille, 2014), and web-retrieval images (Yue, Sun, Yang,
Wu, 2013) are the common sources for reference images.
Several RefSR algorithms (Wang, Liu, Heidrich, & Dai, 2017;

ue et al., 2013; Zheng, Ji, Wang, Liu, & Fang, 2018) achieved
reat performance when LR and reference images were tightly
ligned. However, a reduction of performance occurs when LR
nd reference images present considerable discrepancies, given
402
Fig. 1. Comparison between CUFED (the traditional reference dataset) with
Draper (the satellite image dataset used in this paper). Images in the Draper
dataset present heterogeneous visual characteristics due to a variety of reasons
that include the difference in synthetic bands (the second row of Draper in
Fig. 1)) and overexposure issues (the next two columns of Draper in Fig. 1)),
causing great difficulty for traditional algorithms to transform features between
the reference and the input image.

their inability to effectively coupling LR and reference images. In
light of this issue, Zhang, Wang, Lin, and Qi (2019) proposed a
deep model that adopts local texture matching for long-distance
dependency. Most recently, Yang, Yang, Fu, Lu, and Guo (2020) in-
troduced a new approach for searching and transferring relevant
textures from the reference images to LR images. SSEN (Shim,
Park, & Kweon, 2020) was further proposed to align the reference
images and LR images in the feature domain to capture similarity-
aware. To handle large displacement between LR and reference
images, Yue et al. (2021) proposed a coarse-to-fine dense warping
strategy that can deal with both large- and small-scale mis-
alignments well. Despite their better performances compared
with SISR methods, they cannot be applied in scenarios without
ground truth images.

Images in the traditional reference dataset, i.e., CUFED (Wang
et al., 2016), are taken within a relatively short time interval
(3 h), suggesting a generally homogeneous imaging environment.
Fig. 1 presents the comparison between selected images in CUFED
and Draper (the satellite image dataset used in this paper). We
can observe that the input and reference images in CUFED are
similar both in the content and imaging environment, and there-
fore feature fusion can be performed with traditional algorithms
within the feature domain. However, satellite sample images
from Draper show considerably different visual characteristics
due to the difference in synthetic bands (the second row of Draper
in Fig. 1) and overexposure issues (the next two columns of
Draper in Fig. 1), causing great difficulty for traditional algorithms
to transform features from the reference image to the input
image.

3. Our method

In this section, we provide detailed information regarding the
problem formulation, loss function, and network architecture that
consists of three major components: a generator, a reference
feature extractor, and a recurrent updater.

3.1. Problem formulation

To recover the missing high-frequency textures along with
other details from LR images I LR ∈ RC×H×W and reconstruct an
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Fig. 2. Illustration of the EIP framework that includes three major components:
the generator, the reference feature extractor, and the recurrent updater.

HR image IHR ∈ RC×t·H×t·W , the conventional formulation of SR
methods can be represented as I LR = DIHR, where D denotes
he down-sampling matrix, and t denotes the scale factor. Here,
e assume that HR/LR pairs are unavailable and impractical to
btain. Nevertheless, we can obtain a set of LR and Ref-HR images
sed for unsupervised training. Rather than minimizing the error
etween the SR images and the ground truth in most supervised
ethods, the proposed method is to retrieve texture and content

nformation from the reference that benefits the reconstruction
f LR images with similar information. Thus, the goal of the pro-
osed method is to fuse heterogeneous information via a unified
ramework.

In reference images, the information to be preserved includes
ow-level information (e.g., textures and edges) and high-level
nformation (e.g., content and global structures). As unsupervised
ethods usually fail to estimate high-frequency information in
igh-resolution space compared to traditional SR methods, it
s difficult to transform information from the reference image
nto the generated image within the feature domain. Experi-
ents also prove that observable image artifacts are introduced
hen the transformation process takes place in the feature space
more details in Section 4.4). We solve this problem by referring
o the latent code of the reference image that carries implicit
nformation.

The pipeline of EIP is summarized in Fig. 2. We denote IRef ∈
C×t·H×t·W as the corresponding HR reference image. The random
oise maps ninit are represented as C ′

× t ·H× t ·W . The proposed
ethod mainly consists of three major components: a generative
etwork, a reference feature extraction network, and an enhanced
mage prior model. First, a mapping function from noise maps to
n HR image is learned. Further, an encoder–decoder model to
ode and transform the reference image is adopted. Finally, the
oded feature maps of the reference image are mapped into the
atent space and random noise n is updated. In the following
init

403
Fig. 3. Illustration of the skip model in the proposed generative network. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

subsections, we give more details on the generator, the reference
feature extractor, the enhanced image prior model.

3.2. The generator

Different from common GAN-based image generation tasks,
SR tasks requires that the generated images to be not only high-
quality but also as real as possible. Directly applying GAN-based
SR models (Goodfellow et al., 2014; Ledig et al., 2017) in an
unsupervised framework often causes notable checkerboard phe-
nomenon due to the up-sampling operation (more details in
Section 4.4). Given an input HR-size noise map, we first generate
an image, which can be formulated as,

I SR = H(n), (1)

where n denotes the noise map, H(.) denotes the function of the
SR network in the proposed method, and I SR refers to the output
of the SR network.

In deep CNN, information redundancy often exists between
shallow feature maps and deep feature maps. Dense convolu-
tional networks (Huang, Liu, Van Der Maaten, & Weinberger,
2017) that connect each layer to every other layer are proposed
to encourage feature re-utilization and thus achieves high per-
formance in image classification tasks. Although no additional
parameters are introduced in dense networks, such dense net-
works lead to a dramatic increase in computation caused by the
sharp increase of the channels of feature maps. As for the image
SR tasks, it is crucial to exploit and fuse the shallow and deep
feature maps in an effective manner. In the proposed method, we
adopt stacked skip models for reconstructing purposes, as shown
in Fig. 3. The skip generative network consists of 2m(m = 4)
convolutional blocks (shown in green color). Each convolutional
block, with 128 feature maps, is composed of two 3 × 3 con-
volutions with a stride of 1. Furthermore, each convolutional
layer is followed by the Leaky ReLU activation and the Batch
Normalization (Ioffe & Szegedy, 2015). For the proposed skip
model, we generate deep features by extracting shallow feature
maps and further modify the dense skip connection strategy to
interval connection.

3.3. Reference feature extraction

Most traditional reference-based supervised approaches aim
to design deep networks that align the reference and SR images
in the feature domain (Yang et al., 2020; Zhang et al., 2019). The
performance of these algorithms is highly dependent on pixel-by-
pixel supervision. Considering the great heterogeneity in satellite
images (e.g., different shooting angles and different time periods),
we advocate an encoder–decoder model to exploit the prior of the
reference image, which can be formulated as,
Ref Ref
f = encode_decode(I ), (2)
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Fig. 5. The proposed recurrent updating strategy.

here encode_decode() refers to the function of the encoder–
ecoder model. Noted that it consists of three parts: encode
lock encode(), feature transformer layer ft (.), and decode block
ecode(). In particular, the reference feature extractor can be
ormulated as,
Ref

= decode(ft (encode(IRef ))). (3)

n order to compress the reference image into high dimensional
eature space, the encoder–decoder network follows a U-shaped
esign as the U-Net (Ronneberger, Fischer, & Brox, 2015).
Different from the existing studies that transform the local

eatures from the reference image into the SR image, we employ
patial transformer networks (STN) (Jaderberg et al., 2015) to
ncrease the invariance of the affine transformation in a CNN
etwork as the feature transformer layer. Learnable localization
nd grid can be served as an affine transformation matrix. An
mage sampling function is applied to sample the feature maps,
nd sampled feature maps are further merged into a spatial
ransformer. In this work, we leverage the STN block for the
ranscoding process.

The spatial transformer network is defined as follows:

xoutput
youtput

]
=

[
θ11 θ12 θ13
θ21 θ22 θ23

]⎡⎣ xinput
y input

1

⎤⎦ , (4)

here (xinput , y input ) are the coordinates in input feature maps,
xoutput , youtput ) are the coordinates in the output maps, and θ

enotes 2D transformation parameters.

.4. Enhanced image prior

Texture transferring and alignment from the Ref-HR image are
he core problems of reference-based SR approaches (in both su-

ervised and unsupervised manners). Existing RefSR approaches

404
Shim et al., 2020; Yang et al., 2020) rely on strongly super-
ised learning strategies to achieve this goal. We call this ‘‘hard
pdate’’. However, these methods generally present limited per-
ormance in an unsupervised framework (see Section 5.3 for
etails). We propose a recurrent updating strategy, termed as
‘soft update’’ (Fig. 5). The main idea of the proposed updating
trategy is to transform features to the latent space as well as
pdate the initial noise at the same time so as to achieve texture
igration while avoiding local optimization.
We first convert feature maps of the reference image into

he latent space that carries the structural information. Then, we
ode the latent space to generate images with the same semantic
argets and attributes. We introduce prior information through
emporal patterns and update the noise iteration-by-iteration.
he proposed updating strategy can be formulated as,

ni+1 = Ψ (ni, f
Ref
i )

= ni + α · f i(x), and n1 = ninit ,
(5)

where i is the number of iterations, f Ref is the feature map of the
reference image, and f (x) is the hidden space matrix generated
by the Gaussian function that transfers the enhanced image prior
from the reference image. In particular, the input noise is updated
as:

f i(x) =
1

√
2πstd

(
f Refi

) × exp(−

(
x−mean

(
f Refi

))2
2std

(
f Refi

)2 ), (6)

where std(.) denotes the standard deviation function, and mean(.)
denotes the mean function.

3.5. Loss function

The goal of supervised SR is to generate an SR image/patch
from the corresponding LR one by minimizing the error in HR
space (Lu et al., 2019). Existing methods take pixel-wise error as
the loss function for higher objective assessment. Among them,
mean square error (MSE) and mean absolute error (MAE) are the
most widely used loss function. Considering the lack of ground
truth in our unsupervised approach, we downsample the SR
image I SR via the Lanczos resampling (Turkowski, 1990) function
as (Haut et al., 2018), and minimize the MSE between the down-
sampled version of the SR image with I LR in LR-size domain. This
process can be described as follows:

L(θ, S) =
I LR − down(I SR)


2

=

I LR − I LR
′

2
,

(7)

here down(.) is the Lanczos resampling function. I LR
′

denotes
he LR-size version SR image, θ denotes the parameters in the
roposed method, and S denotes the training data.
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able 1
omparisons of the average number of matching points in a four-level scheme.
Data Number of matching points Levels

Day1 26.07 L2
Day2 24.88 L3
Day3 23.10 L4
Day4 27.46 L1

4. Experiments

In this section, we describe the public datasets used in the
xperiment, detail the configuration of the proposed method, and
resent the evaluation results of our method.

.1. Datasets

The Draper dataset1 is a publicly available benchmark of Kag-
le competition for remote sensing images, including a total of
24 scenarios with five images in each scenario. The photographs
ere captured from a plane, a reasonable facsimile for satellite

mages taken at different times. The images in the Draper dataset
re 3099 × 2329 pixels. We randomly select two sets of images
five images in a set) from this dataset, as shown in Fig. 4, and
ame them ‘‘Day 1’’, ‘‘Day 2’’ ,‘‘Day 3’’ ,‘‘Day 4’’ , and ‘‘Day 5’’.
ote that the images may not be at the same time each day.
We take 41 representative images (airport, highway, parking,

tc.) from ‘‘Day 5’’ and define a four-level scheme from high to
ow, i.e., L1, L2, L3, and L4, according to the number of SIFT (Lowe,
999) feature matches. Table 1 presents the matching results of
he Draper dataset, where we regrade the dataset according to the
eature similarity based on the number of SIFT matching points.
or images in each set (five images in a set), we crop 192 × 192
atches from ‘‘Day 5’’ as the ground truth and the corresponding
mages for the remaining four days as references.

.2. Implementation details

All models presented in this paper are trained with Adam
Kingma & Ba, 2015) optimizer with β1 = 0.9, β2 = 0.999, and
= 1e − 8. Each mini-batch contains one 192 × 192 noise map
nd the reference patches with the same size. We initialize the
earning rate as 1e−4. We set the spectral bands of noise C ′

= 32.
hese experiments run on a desktop with two NVIDIA GTX 2080Ti
PUs, 3.60 GHz Intel Core i7-7820X CPU, and 32 GB memory.
e implement the proposed method using PyTorch 1.1.0 library2
ith Python 3.5.6 under Ubuntu 18.04, CUDA 10.1, and CUDNN
.5 systems. We train the model over 10,000 iterations, until the
odel converges by minimizing the loss function equation (7).
Evaluation measures. Seven widely used image quality as-

essment (IQA) indices are employed to evaluate the perfor-
ance, including peak signal to noise ratio (PSNR) (Huynh-Thu
Ghanbari, 2008), structural similarity (SSIM) (Wang, Bovik,

heikh, & Simoncelli, 2004), feature similarity (FSIM) (Zhang,
hang, Mou, & Zhang, 2011), visual information fidelity (VIF)
Sheikh & Bovik, 2006), erreur relative globale adimensionnelle
e synthese (ERGAS) (Veganzones et al., 2015), spectral angle
apper (SAM) (Yuhas, Goetz, & Boardman, 1992), and learned
erceptual image patch similarity (LPIPS) (Zhang, Isola, Efros,
hechtman, & Wang, 2018). PSNR, SSIM, and FSIM are three
idely adopted quality indices in SR tasks, while SAM and ERGAS
re commonly used quantitative image quality indices in fusion

1 https://www.kaggle.com/c/draper-satellite-image-chronology/data
2 https://pytorch.org
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tasks. VIF measures information fidelity by computing the dis-
tortion between the ground truth and the reconstructed results.
LPIPS represents human perception similarity. PSNR, SSIM, FSIM,
VIF, and ERGAS are evaluated in the Y channel of transformed
YCbCr space, while the others are evaluated in the RGB space.
Note that the low resolution images are generated by downsam-
pling the ground truth with a scale factor of ×4 or ×8 via a
icubic function (the Matlab function imresize).

.3. Comparison with state-of-the-art unsupervised methods

To verify the effectiveness of the proposed method, we com-
are the results from EIP with those from state-of-the-art un-
upervised SR methods, including DIP (Lempitsky et al., 2018),3
IP-ResNet (Lempitsky et al., 2018), URSSR (Haut et al., 2018),
nd ZSSR (Assaf Shocher, 2018),4 among which URSSR (Haut
t al., 2018) is acknowledged to achieve the state-of-the-art per-
ormance in remote sensing image SR. DIP (Lempitsky et al.,
018) achieves state-of-the-art visual quality, even compared
ith some supervised SR algorithms. All experiments are per-

ormed with the scale factors of ×4 and ×8.
Table 2 shows the average performance of EIP and other

ompeting methods in PSNR, SSIM, FSIM, VIF, ERGAS, SAM and
PIPS for ×4 and ×8 on the draper dataset, where the bold
epresents the best performance. ZSSR (Assaf Shocher, 2018) is an
R-input-based method and thus can achieve stable performance.
e can observe that the proposed EIP framework is considerably

uperior to all selected competitive approaches. On average, the
SNR and SSIM of the proposed EIP framework for scale factor
4 are 1.26 dB and 0.0293 higher than the second-best method,
espectively. With a scale factor ×8, the average PSNR in EIP
is 27.10 dB, 0.50 dB higher than URSSR (Haut et al., 2018) and
0.72 dB higher than and ZSSR (Assaf Shocher, 2018).

Fig. 6 presents several reconstructed images and the corre-
sponding error maps of selected representative scenarios (e.g.,
irplanes, roads, and ships) on the Draper dataset with upsam-
ling factors ×4. Fig. 7 presents results with upsampling factors

×8. From Table 2, we observe that DIP-ResNet (Lempitsky et al.,
2018) fails to restore clear and sharp details. Therefore, we do not
present their qualitative results. The visual comparison suggests
that the results from ZSSR (Assaf Shocher, 2018) contain shape
edges (high-frequency information), however, with a lot of arti-
facts. This may be due to the fact that ZSSR (Assaf Shocher, 2018)
directly extends the model of pseudo training pair to the original
space. URSSR (Haut et al., 2018) and DIP (Lempitsky et al., 2018)
employ a similar learning strategy, while an hourglass-shaped
network (URSSR) fills pixels by sampling to effectively alleviate
the local optimization problem in DIP. In comparison, our method
retains not only sharper edges but also finer details than the other
methods (please refer to the regions marked with yellow boxes).

4.4. Performance and model trade-offs

To validate the advantages of the proposed EIP framework, we
design several other unsupervised reference-based networks for
comparison, as shown in Fig. 8. Their reconstructed images and
the corresponding error maps are shown in Fig. 9.

Structure 1 The first designed structure (Fig. 8(a)) generates
HR images by fusing the reference and the LR images in the
feature domain, the same approach as the majority of existing
reference-based methods. We used an encoder–decoder model
to directly encode images and use a CNN model to generate

3 https://github.com/DmitryUlyanov/deep-image-prior
4 https://github.com/assafshocher/ZSSR

https://www.kaggle.com/c/draper-satellite-image-chronology/data
https://pytorch.org
https://github.com/DmitryUlyanov/deep-image-prior
https://github.com/assafshocher/ZSSR
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Fig. 6. Visual comparison among different SR method on draper dataset with scale factor × 4. From left to right, they are the ground truth, results of Bicubic,
URSSR (Haut et al., 2018), ZSSR (Assaf Shocher, 2018), DIP (Lempitsky et al., 2018), and the proposed EIP method. The bottom images are the reconstruction error
maps of the corresponding methods. The yellow box shows significant improvements.

Fig. 7. Visual comparison among different SR method on Draper dataset with scale factor × 8. From left to right, they are the ground truth, results of Bicubic,
URSSR (Haut et al., 2018), ZSSR (Assaf Shocher, 2018), DIP (Lempitsky et al., 2018), and the proposed EIP method. The bottom images are the reconstruction error
maps of the corresponding methods. The yellow box shows significant improvements.
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Table 2
Average quantitative comparisons of different approaches on the Draper dataset. Bold indicates the best result. ↑

indicates that the larger the value, the better the performance, and ↓ indicates that the smaller the value, the better
the performance.
Method Scale PSNR ↑ SSIM ↑ FSIM ↑ VIF ↑ ERGAS ↓ SAM ↓ LPIPS ↓

Bicubic

×4

28.98 0.7838 0.8135 0.4046 1.4966 0.6696 0.3772
DIP-ResNet (Lempitsky et al., 2018) 15.20 0.2361 0.5128 0.0878 6.7941 5.5102 0.8108
ZSSR (Assaf Shocher, 2018) 29.43 0.7851 0.8369 0.3508 1.3955 0.9616 0.2377
URSSR (Haut et al., 2018) 29.57 0.8055 0.8370 0.4016 1.4015 0.6657 0.3016
DIP (Lempitsky et al., 2018) 29.66 0.8129 0.8496 0.3921 1.3745 0.7489 0.2531
EIP 30.89 0.8429 0.8689 0.4607 1.1995 0.6215 0.2240
Bicubic

×8

26.06 0.6628 0.7109 0.2424 2.0965 1.0476 0.6119
DIP-ResNet (Lempitsky et al., 2018) 13.33 0.0980 0.4220 0.0229 8.4052 9.0296 0.8266
ZSSR (Assaf Shocher, 2018) 26.38 0.6686 0.7342 0.2114 2.0243 1.0777 0.5829
URSSR (Haut et al., 2018) 26.60 0.6737 0.7388 0.2010 1.9436 1.2973 0.4588
DIP (Lempitsky et al., 2018) 26.07 0.6732 0.7481 0.2030 2.0801 1.1024 0.4982
EIP 27.10 0.7025 0.7534 0.2649 1.8498 0.9669 0.4455

All the codes are provided by the authors, and the parameters are set according to models with the best performance
in their papers.
Fig. 8. Experiments for validating the advantages of the proposed structure. (a) Structure 1: fuse the reference image and the LR image in the feature domain. (b)
Structure 2: input LR-size noise maps. (c) Structure 3: the proposed EIP method.
and concatenate feature maps. Following the above steps, the SR
network is used to reconstruct the image.

We found that the results from Structure 1 contain a lot of
ndesired artifacts, as shown in Fig. 9(a) (highlighted by the blue
ox). The middle images are the enlarged version of the red box
n the top images. The bottom images are the reconstruction error
aps of the corresponding methods. Owing to the different syn-

hetic bands in LR images and the HR reference image, the same
bject can present varying contrasts. We observe that the recon-
tructed images from Structure 1 tend to inherit the textures and
ther details from the reference image (the red box in the second
ow of Fig. 9(a)). Different from the existing supervised reference-
ased methods, the unsupervised framework lacks the original
R image, precluding the calculation of pixel-by-pixel errors. The
eak supervising nature of this model increases the difficulty of
xchanging information in high-level feature dimensions.
Structure 2 Existing SR algorithms are based on LR spaces,

eading to their excellence in reducing the demand for compu-
ational resources. Therefore, we aim to explore the utility of
R inputs in this framework. In this experiment, we resize the
andom noise maps (C ′

× H × W ) as the input of the network,
s shown in Fig. 8(b). We use the maxpool function to down-
ample reference feature maps and update the input noise maps
n the latent space. Finally, we employ the pixel-shuffle layer for
p-sampling, which can be formulated as,

LS2(θ, S) =
I LR − down(up(I SR))


2, (8)

here down(.) denotes the Lanczos resampling function, and
p(.) denotes the pixel-shuffle layer.
Experimental results and corresponding error maps in Fig. 9(b)

eveal notable checkerboard phenomenon in the images, greatly
ffecting the visual experience. As discussed in Section 3.5, the
rocess of network optimization, like the one in supervised super-
esolution tasks, is often viewed as an ill-posed problem. The
407
Fig. 9. The reconstructed images and the corresponding error maps for structure
described in Fig. 8. The middle images are the enlarged version of the red
boxes in the top images. The bottom images are the reconstruction error maps
of the corresponding methods. The blue box highlights notable artifacts. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

up-sampling component of the SR network improves the effi-
ciency of the network, however, making the model prone to local
optimum.

In order to further analyze the effectiveness of Structure 2, we
introduce the total variation (TV) loss function (Rudin, Osher, &
Fatemi, 1992) is introduced that encourages spatial smoothness
in the generated image. The total loss function is the sum of the
TV loss and LS2:

L = L + λL , (9)
total S2 TV
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Fig. 10. Visualization of results from selected methods to demonstrate the impact of the loss function.
Table 3
Average quantitative comparisons among different approaches with scale factor ×4 on the Draper dataset. Bold indicates the best
result. ↑ indicates that the larger the value, the better the performance, and ↓ indicates that the smaller the value, the better the
performance.
Method PSNR ↑ SSIM↑ FSIM ↑ VIF ↑ ERGAS ↓ SAM ↓ LPIPS ↓

DIP (Lempitsky et al., 2018) 29.66 0.8129 0.8496 0.3921 1.3745 0.7489 0.2531
Structure 1 29.86 0.8017 0.8436 0.3913 1.3368 1.0822 0.2874
Structure 2 12.16 0.0446 0.3327 0.0758 10.4490 36.1206 0.8528
EIP 30.89 0.8429 0.8689 0.4607 1.1995 0.6215 0.2240
T
Q
I
b

where LTV is the TV loss, and λ is used to balance the contribu-
ions of different losses. As shown in Fig. 10, we train Structure 2
ith λ ranging from 1e−4 to 10. Although additional regulariza-
ion can effectively improves the performance, the checkerboard
henomenon remains notable. However, there is no checker-
oard phenomenon in the down-sampling version SR images. The
esults of this experiment suggest that a coupled up-sampling
unction up(.) and down sampling function down(.) can offset the
nformation loss caused by the up(.) function.

The proposed method (EIP) Fig. 8(c) presents the recon-
tructed images and corresponding error maps of the proposed
IP. We observe that the reconstructed results from EIP contain
ore texture information. From these error maps, the proposed
ethod achieves the best fidelity in terms of detail recovery.
To quantitatively compare reconstructed results

uantitatively, we report the average PSNR, SSIM, FSIM, VIF, ER-
AS, SAM, and LPIPS of the structures described in Fig. 8 (Table 3).
e observe that the proposed EIP method greatly outperforms
ther algorithms in all evaluation metrics. On average, the PSNR
f Structure 2 is 0.2 dB higher than that of DIP, showing that,
espite the artifacts in the reconstructed images, the features
rom the reference image were learned and transferred. The pro-
osed method outperforms Structure 2, evidenced by the 1.03 dB
mprovement in the average PSNR.

.5. Results on general images

Previous experiments are conducted on the Draper datasets
ith remotely sensed images. To evaluate the expendability of
he proposed EIP, we conduct additional experiments on the
UFED dataset (Lempitsky et al., 2018), a widely used database
hat contains general images with a size of 160 × 160 pixels.

In this experiment, we randomly select 50 images from the
UFED dataset (Lempitsky et al., 2018). Table 4 reports the aver-
ge performance of EIP, DIP, URSSR, ZSSR, Bicubic in four selected
QAs (i.e., PSNR, SSIM, FSIM, and VIF), where bold represents
he best performance (considering the poor performance of DIP-
esNet, we do not present its results, Lempitsky et al., 2018).
408
able 4
uantitative comparisons of different approaches from CUFED dataset with four
QAs. Bold indicates the best result. ↑ indicates that the larger the value, the
etter the performance.
Method Scale PSNR ↑ SSIM ↑ FSIM ↑ VIF ↑

Bicubic

×4

25.36 0.6882 0.7952 0.3548
ZSSR (Assaf Shocher, 2018) 25.80 0.7156 0.8270 0.3630
URSSR (Haut et al., 2018) 25.82 0.7087 0.8404 0.3322
DIP (Lempitsky et al., 2018) 25.59 0.7162 0.8358 0.3482
EIP 26.39 0.7357 0.8436 0.3931
Bicubic

×8

23.10 0.5745 0.6957 0.2262
ZSSR (Assaf Shocher, 2018) 23.36 0.5857 0.7262 0.2084
URSSR (Haut et al., 2018) 22.82 0.5473 0.7418 0.1599
DIP (Lempitsky et al., 2018) 23.16 0.5981 0.7353 0.2202
EIP 23.82 0.6107 0.7365 0.2526

All the codes are provided by their authors, and parameters are set according
to models with the best performance in their papers.

Table 4 shows that the proposed method significantly outper-
forms other methods with ×4 and ×8. The PSNR of the proposed
EIP is 0.59 dB higher than the second-best method with upsam-
pling factor ×4. With a scale factor ×8, the average PSNR in EIP
is 23.82 dB.

Figs. 11 and 12 show the qualitative comparison among the
proposed EIP, URSSR (Haut et al., 2018), ZSSR (Assaf Shocher,
2018), and DIP (Lempitsky et al., 2018) with upsampling fac-
tors ×4 and ×8. We observe that results from URSSR (Haut
et al., 2018) and DIP (Lempitsky et al., 2018) present noticeable
artifacts. In addition, there exists a notable problem of local
optimization from the results of DIP (Lempitsky et al., 2018)
with upsampling factor ×8. ZSSR (Assaf Shocher, 2018) is able
to recover sharp contours, however, with dirty effects (e.g.., the
deformed wall lamp). In comparison, results from EIP contain
sharp edges and clear image content (please refer to the regions
marked with yellow boxes), suggesting the expendability of the
proposed method on general images.
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Table 5
Quantitative comparisons among structures described in Fig. 8. ↑ indicates that the larger the value, the better the performance,
and ↓ indicates that the smaller the value, the better the performance.
Method PSNR ↑ SSIM↑ FSIM ↑ VIF ↑ ERGAS ↓ SAM ↓ LPIPS ↓

Structure 1-L2 29.81 0.7989 0.8418 0.3874 1.3466 1.0923 0.2876
Structure 1-L3 29.76 0.7989 0.8407 0.3855 1.3551 1.1044 0.2915
Structure 1-L4 29.77 0.7985 0.8406 0.3841 1.3519 1.0680 0.2948
Structure 1-L1 29.86 0.8017 0.8436 0.3913 1.3368 1.0822 0.2874
EIP-L2 30.88 0.8435 0.8692 0.4612 1.1984 0.6226 0.2243
EIP-L3 30.88 0.8433 0.8692 0.4609 1.1992 0.6223 0.2247
EIP-L4 30.88 0.8431 0.8688 0.4598 1.1988 0.6241 0.2244
EIP 30.89 0.8429 0.8689 0.4607 1.1995 0.6215 0.2240
Fig. 11. Reconstruction results on UCFED dataset with the scale factor of 4. The yellow box shows significant improvements.
.6. Results on real satellite images

To test the capability of EIP in handling images in a real-world
cenario, we conduct experiments on the SuperView-1 satellite
mages5 (0.5 m resolution) to further illustrate the applicability of
he proposed algorithm. SuperView-1 is a satellite constellation
etwork that includes four satellites with an orbital altitude
f 530 km. The reference images were uploaded on November
0, 2017, and the LR video images were taken on January 16,
018. These images mainly cover the region of Malaysia. We
rop the center region of the LR image to derive a sub-image
ith 255 × 255 pixels while the corresponding reference Ref-HR

mage is cropped to 765 × 765 pixels.
Since no ground-truth images are available in this experiment,

e introduce two non-reference IQA metrics: the spatial–spectral
ntropy-based quality (Liu, Liu, Huang, & Bovik, 2014) (SSEQ, 0 as
he best value) and the naturalness image quality evaluator (Mit-
al, Soundararajan, & Bovik, 2012) (NIQE, 0 as the best value), to
alculate the sharpness of the SR images. In order to verify the
uperiority of the proposed EIP framework, a supervised single
mage SR algorithm (RCAN) (Zhang et al., 2018) trained on the
raper dataset is included as a comparison.
Fig. 13 shows the reconstructed images and the performance

f two IQAs. From the reconstructed images, our proposed
ethod achieves a better performance in both SSEQ and NIQE.
he reconstructed results from RCAN (Zhang et al., 2018) reveal
ver-smoothed details. The results from EIP suggest that it suc-
essfully restores the dome of the building with fewer jagged
ines and few ringing artifacts. The great performance of EIP on
atellite images with large time spans between the input and
eference images shows the great applicability of our method in
andling unknown degradation scenarios. On the other hand, the
esults prove that the performance of the supervised SR algorithm

5 http://www.spacewillinfo.com/Satellite/Satellite/superview/#main
409
is limited for images that are captured in an unknown acquisition
process, coinciding with studies by Levin et al. (2009), Shocher
et al. (2018) and Soh et al. (2020).

5. Ablation experiments

5.1. Ablation study on reference similarity

The above results indicate that reference images play an im-
portant role in the performance of the proposed method. In
this section, we explore the influence of reference images on
algorithm performance. Zhang et al. (2019) concluded that the
performance of the feature transformation based method is pos-
itively correlated with reference similarity. To investigate the
gap between the feature transformation based method and the
proposed method, we conduct an experiment by replacing the
reference image. Meanwhile, we compare the proposed method
with the ‘‘Structure 1’’ described in Section 4.4, which can be seen
as a representative of the feature transformation-based method in
an unsupervised framework.

Table 5 lists the average performance of ‘‘Structure 1’’ and
the proposed method with reference images at four different
similarity levels (see Section 4.1 for details) under ×4 as the
scale factor. Metrics for evaluation include PSNR, SSIM, FSIM,
VIF, ERGAS, SAM, and LPIPS. It can be observed that the per-
formance of the feature transformation-based method is closely
related to the reference similarity level, even in an unsupervised
framework. With the increase of the similarity, the PSNR/SSIM
of ‘‘Structure 1’’ increases accordingly. In comparison, similarity
levels play a weak role in the performance of the proposed EIP
framework, demonstrating the strong adaptiveness of EIP, as it
realizes the implicit information transmission instead of simple
texture migration.

http://www.spacewillinfo.com/Satellite/Satellite/superview/#main
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Fig. 12. Reconstruction results on UCFED dataset with the scale factor of 8. The yellow box shows significant improvements.
Fig. 13. Comparison of reconstructed HR images obtained via various methods
ith a scale factor of 3 on video satellite images. The yellow box shows
ignificant improvements.

.2. Ablation study on hyperparameter

The framework of the proposed method implies that hyper-
arameter α potentially determines the model performance as
t plays a balancing role in the image prior enhancing. To study
he effectiveness of hyperparameter α and to derive α that leads
o the best performance of the model, we train EIP with α that
ncreases from between 0.01 to 0.35 with 0.02 as an interval.
ther configurations remain unchanged.
The quantitative results by PSNR/SSIM with respect to differ-

nt α are shown in Fig. 14. We notice that the performance of
IP increases when α increases from 0.01 to 0.11, and it becomes

stable when α increase from 0.11 to 0.21. As α further increases
from 0.21 to 0.35), the performance reduces. We conclude that
he proposed method achieves the best performance when α =

.11. Therefore, we choose α = 0.11 as our final setting.

5.3. Comparison with the RefSR method

To further verify the superiority of the proposed model, curves
of loss values per each iteration on the Draper dataset are pre-
sented in Fig. 15. We implement TTSR (Yang et al., 2020), a
state-of-the-art RefSR based SR algorithm,6 with the loss function
Eq. (7) in an unsupervised framework. These curves show that
it is difficult (Yang et al., 2020) for TTSR to converge, while the

6 https://github.com/researchmm/TTSR
410
Fig. 14. Effect of hyperparameter α on model performance. When α = 0.11, the
proposed method achieves the best performance.

Fig. 15. Curves of the training procedure between proposed EIP and TTSR (Yang
et al., 2020), a state-of-the-art RefSR based SR algorithm. These curves show that
it is difficult for TTSR (Yang et al., 2020) to converge, while the proposed EIP
can converge in a stable manner.

proposed EIP can converge in a stable manner. The fast con-
vergence in the early stage of TTSR (Yang et al., 2020) can be
explained by the fact that its takes low-resolution (LR) images
as input. The original version of TTSR (Yang et al., 2020) benefits
from its capability in texture alignment and transferring under
strongly supervised learning. However, as demonstrated in the
experiments of Structure 2 (see Section 4.4), LR-sized input re-
sults in the checkerboard phenomenon, which inevitably leads
to the increase of the loss. Therefore, the loss of TTSR follows
a two-stage pattern. Thus, it is difficult to establish a stable
unsupervised TTSR model (Yang et al., 2020).

https://github.com/researchmm/TTSR
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Fig. 16. Reconstructed SR images their corresponding classification results using the ISODATA classification method. Black boxes emphasize areas with notable artifacts
or blurring.
D

D

D

F

G

G

G

G

H

H

H

H

H

H

5.4. Effectiveness for post-processing

We employ the iterative self-organizing data analysis tech-
niques algorithm (ISODATA), a classical unsupervised semantic
segmentation for satellite images, to evaluate the results from
different SR methods. The number of the classes is set to five.
We set the maximum iteration to five times as Chang, Yan,
Fang, Zhong, and Liao (2018). Fig. 16 shows the results of recon-
structed SR images and their corresponding classification results.
The black boxes emphasize the areas with notable artifacts and
blurring. Specifically, results from URSSR (Haut et al., 2018), an
hourglass model, show notable artifacts and missing information,
presumably due to the repeated procedure of downsampling and
upsampling. As for ZSSR (Assaf Shocher, 2018), its simple feature
maps and shallow convolution blocks bring limited performance
limitation. While DIP (Lempitsky et al., 2018) constructs high
resolution images using fixed noise as input, the initialized noise
is noticeable on the resultant images. In comparison, the classi-
fication result of the proposed EIP is visually the closest to the
high resolution image, suggesting the superiority of the proposed
method.

6. Conclusion

In this paper, we propose a new unsupervised learning
framework, Enhanced Image Prior (EIP), which achieves high
performance in SR tasks without low/high resolution image
pairs. First, we feed random noise maps into a designed GAN for
satellite image SR reconstruction. Then,we convert the reference
image to latent space as the enhanced image prior. Finally, we
update the input noises via a recurrent updating strategy and
further transfer the texture and structured information from
the reference image. Our experiments using both simulated
and real-world data reveal the competitive performance of the
proposed approach when super-resolving satellite images. Future
efforts can focus on exploring an LR-input-based framework,
serving as a potential replacement of the proposed architecture
for efficient reconstruction. We believe that the proposed method
can be generalized to other remote sensing image enhancement
tasks, such as cloud removal and denoising.
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