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1  |  INTRODUC TION

Under the context of global climate change, temperature (Ts) pres-
ents a notable increasing trend (IPCC, 2013), while soil moisture 
(SM) suggests otherwise, showing a decreasing trend (Albergel et al., 
2013; Deng et al., 2020) with heightened groundwater vulnerability 
(Nistor, 2019). Suitable Ts and sufficient SM are the basic conditions 
for vegetation growth. Low SM and high Ts are the two major factors 
that cause water and heat stress on vegetation, leading to severe 

damage to agricultural productivity (Madadgar et al., 2017; Shao 
et al., 2020), and tree mortality (Craig et al., 2010; Park et al., 2012). 
Studies have shown that SM played an important role in carbon sinks 
in terrestrial ecosystems (e.g., Green et al., 2019), and studies have 
also shown that elevated Ts increased vegetation photosynthesis 
(e.g., Nemani, 2003). Therefore, an in-depth understanding of the 
impacts of Ts and SM changes on ecosystem productivity is bene-
ficial to the improvement of assessing terrestrial vegetation gross 
primary productivity (GPP), carbon budget, and climate change.
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Abstract
The accurate assessment of the global gross primary productivity (GPP) of vegetation 
is the key to estimating the global carbon cycle. Temperature (Ts) and soil moisture 
(SM) are essential for vegetation growth. It is acknowledged that the global Ts has 
shown an increasing trend, yet SM has shown a decreasing trend. However, the im-
portance of SM and Ts changes on the productivity of global ecosystems remains un-
clear, as SM and Ts are strongly coupled through soil-atmosphere interactions. Using 
solar-induced chlorophyll fluorescence (SIF) as a proxy for GPP and by decoupling 
SM and Ts changes, our investigation shows Ts plays a more important role in SIF in 
60% of the vegetation areas. Overall, increased Ts promotes SIF by mitigating the 
resistance from SM’s reduction. However, the importance of SM and Ts varies, given 
different vegetation types. The results show that in the humid zone, the variation of 
Ts plays a more important role in SIF, but in the arid and semi-arid zones, the variation 
of SM plays a more important role; in the semi-humid zone, the disparity in the impor-
tance of SM and Ts is difficult to unravel. In addition, our results suggest that SIF is 
very sensitive to aridity gradients in arid and semi-arid ecosystems. By decoupling the 
intertwined SM-Ts impact on SIF, our study provides essential evidence that benefits 
future investigation on the factors the influence ecosystem productivity at regional 
or global scales.

K E Y W O R D S
decoupling, ecosystem productivity, remote sensing, soil moisture, solar-induced chlorophyll 
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Numerous studies have been made to assess and predict SM 
and Ts changes in vegetation productivity and carbon uptake. On 
the one hand, adequate SM is an essential condition for vegetation 
growth (Padilla & Pugnaire, 2007). Thus, low SM can directly indi-
cate that vegetation is under water stress. In addition, SM can also 
capture the effects of water stress on vegetation productivity (Liu 
et al., 2018; Stocker et al., 2018) and drive plant activity to feedback 
to the climate (Koster, 2004; Seneviratne et al., 2010) or directly 
with the climate (Taylor et al., 2012). On the other hand, most of 
the knowledge on vegetation photosynthesis responses to warming 
comes from the leaf scale (Niu et al., 2008), where photosynthesis 
increases with Ts until the optimum Ts is reached, but beyond the 
optimum Ts, leaf photosynthesis declines in a rapid manner (Medlyn 
et al., 2002). However, studies have shown that the optimum Ts 
for ecosystems differ from the leaf scale (Christopher et al., 1995). 
Elevated Ts usually results in a high vapor pressure deficit (VPD), 
leading to vegetation stomata that reduce water loss (Williams et al., 
2012), which in return might limit vegetation photosynthesis. Recent 
studies have shown that SM plays an important role in vegetation 
productivity (Liu, Gudmundsson, et al., 2020; Xu et al., 2019). Also, it 
has been shown that Ts greatly contributes to vegetation productiv-
ity (Huang et al., 2019; Nemani, 2003; Zhang & Shao, 2021). Despite 
these efforts, the relative importance of elevated Ts and reduced SM 
in contributing to global ecosystem productivity remains unclear. As 
SM and Ts are strongly coupled (Seneviratne et al., 2010), whether 
such coupling effect can lead to an offset between increased Ts and 
decreased SM on ecosystem productivity deserves investigation. 
Studies have shown that the Ts usually fails to reach its optimum 
value in ecosystems (Huang et al., 2019), and an increasing Ts boosts 
photosynthesis. However, SM is currently showing a decreasing 
trend (Deng et al., 2020) and decreasing SM can limit photosynthesis 
(Rogers et al., 2017). Therefore, better knowledge of global ecosys-
tem productivity is much needed under the context of increased Ts 
coupled with decreased SM.

With the development of satellite observations, new satellite 
remote sensing products, such as solar-induced chlorophyll fluores-
cence (SIF), have been widely used. Studies have shown that SIF is 
sensitive to both water and heat stresses (Sun et al., 2015; Wang 
et al., 2019; Yoshida et al., 2015). In addition, SIF is a byproduct of 
vegetation photosynthesis and is homologous to vegetation photo-
synthetic carbon sequestration. Thus, it is closely related to vegeta-
tion GPP (Guanter et al., 2014; Porcar-Castell et al., 2014). SIF also 
has a near-linear relationship with ecosystem GPP at the ecosystem 
scale (Frankenberg et al., 2011; Li et al., 2018) and a strong cor-
relation with GPP at flux sites (Chen et al., 2019; Li & Xiao, 2019a). 
Moreover, high accuracy was obtained for global GPP mapping using 
SIF (Li & Xiao, 2019b). In this study, we use SIF to represent GPP 
metrics, taking advantage of evaluating terrestrial photosynthesis 
and ecosystem function.

We hypothesize that if SM plays a dominating role in ecosystem 
productivity, high SM is likely to promote ecosystem productivity 
regardless of changes in Ts. On the contrary, if Ts plays a dominat-
ing role in ecosystem productivity, Ts is likely to promote ecosystem 

productivity regardless of changes in SM. The specific objectives of 
this study are: (1) to decouple the respective effects of Ts and SM 
changes on SIF by unraveling the correlations between SM and Ts; 
(2) to explore the response of SIF of different vegetation types to 
changes in Ts and SM; (3) to explore the influence of aridity gradients 
on SIF.

2  |  MATERIAL S AND METHODS

2.1  |  Datasets

In this study, various data products were used to explore the re-
sponse of global vegetation productivity to decreasing SM and in-
creasing Ts. For consistency, the spatial resolution of these datasets 
was unified to 0.5° using the mean value method.

2.1.1  |  Solar-induced chlorophyll fluorescence (SIF)

Studies have proved that the SIF product from OCO-2 (Orbiting 
Carbon Observatory-2) has a great potential in estimating GPP (Li 
et al., 2018). However, given the spatial and temporal sparsity of 
the data due to the OCO-2 sampling strategy, this data could not 
be directly used for global-scale analyses. Therefore, we used the 
spatially continuous global OCO-2 SIF dataset (GOSIF, hereafter 
SIF) with high spatial and temporal resolution from discrete OCO-2 
SIF, MODIS products, and meteorological reanalysis data (Li & Xiao, 
2019a) (http://data.globa​lecol​ogy.unh.edu/data/GOSIF_v2/). SIF 
was available from 2000 to 2020 with a spatial resolution of 0.05° 
×0.05° and a temporal resolution of 8-day, monthly, and yearly. 
Despite that GOSIF is a great proxy for SIF and SIF is a great proxy 
for photosynthesis, we acknowledge that they are not perfect 
proxies.

The monthly mean SIF data from GOME-2 (Global Ozone 
Monitoring Experiment-2) covers February 2007 to March 2019 
(Level 3, v28, https://avdc.gsfc.nasa.gov/pub/data/satel​lite/MetOp/​
GOME_F/) with a spatial resolution of 0.5° ×0.5°. It was derived 
from the inversion of the far-infrared spectrum peak at 740 nm with 
an improved algorithm (Joiner et al., 2013; Köhler et al., 2014). This 
SIF product has been quality controlled to exclude heavy cloud ef-
fects and to synthesize monthly averages (Sun et al., 2015), but data 
missing problems still exist.

2.1.2  |  Gross primary productivity (GPP)

Derived from the Global Land Surface Satellite (GLASS) GPP prod-
uct (Liang et al., 2020), the GPP products span from 2000 to 2018 
with a spatial resolution of 0.05° and 8-day, monthly, and yearly tem-
poral resolutions (http://www.glass.umd.edu/Downl​oad.html). We 
used the GPP products from GLASS to further validate the spatio-
temporal consistency between SIF and GPP.
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2.1.3  |  Soil moisture (SM)

SM data were derived from the Global Land Evaporation Amsterdam 
Model (GLEAM) v3.5a surface SM and root SM (SMroot) (https://
www.gleam.eu). The GLEAM surface SM was generated by as-
similating the data from European Space Agency's Climate Change 
Initiative (ESA CCI) SM (v5.3) using surface model GLEAM (Burgin 
et al., 2017; Martens et al., 2017; Miralles et al., 2011) through an 
optimized Newtonian light extrapolation method (Martens et al., 
2015). The overall performance accuracy of GLEAM SM products is 
considerably high (median R = 0.71; Beck et al., 2021). The GLEAM 
SM products span from 1980 to 2020 with a spatial resolution of 
0.25° × 0.25° and daily, monthly, and yearly temporal resolutions. 
Moreover, the data gaps have been filled relative to ESA CCI SM 
data, leading to better spatial coverage on the whole terrestrial 
ecosystem.

2.1.4  |  Temperature (Ts)

Monthly mean near-surface temperature data from 1901 to 2020 
were obtained from the Climatic Research Units Time series (CRU 
Ts) v4.05 product (Harris et al., 2020) (https://cruda​ta.uea.ac.uk/
cru/data/hrg/), with a spatial resolution of 0.5° × 0.5°.

2.1.5  |  Aridity index (AI)

The aridity index (AI) was defined as the ratio of precipitation 
to potential evapotranspiration. Precipitation data from CRU Ts 
v4.05 (Harris et al., 2020) and potential evapotranspiration data 
from GLEAM v3.5a (Martens et al., 2017) from 2000 to 2020 
were used in this study. Following a widely used protocol (Feng 
& Fu, 2013; Yao et al., 2020), drylands were defined as areas 
with an AI less than 0.65; subtypes of aridity were defined by 
AI ranges: hyperarid (AI ≤ 0.05), arid (0.05 < AI ≤ 0.2), semi-arid 
(0.2 < AI ≤0.5), and semi-humid semi-arid (0.5 < AI < 0.65) and 
humid (AI ≥ 0.65).

2.1.6  |  Vegetation type

The vegetation cover types were derived from the MODIS 
MCD12C1 land cover type product with the International Geosphere-
Biosphere Programme (IGBP) classification scheme (https://search.
earth​data.nasa.gov/). MODIS IGBP land cover data are an annual 
synthetic product with a spatial resolution of 0.05°. The vegetation 
area was derived based on MODIS land cover types, using the vegeta-
tion cover proportion aggregated to a spatial resolution of 0.5°, where 
areas with vegetation cover proportion ≥75% were defined as vegeta-
tion; otherwise, they were defined as non-vegetation. Each pixel that 
covers 0.5° by 0.5° contains a certain vegetation-type label.

2.2  |  Methods

The technical flowchart that describes the main ideas of this study, 
including data collection, pre-processing, indicators calculation, 
methods, and analysis conclusions, is present in Figure 1. The de-
coupling method and analysis for SM-Ts are the core components 
of this study. We verified the reliability of our results by comparing 
them with results from other methods and data sources.

2.2.1  |  Standardized anomaly

In order to explore the impacts of changes in Ts and SM on SIF 
under global climate change, pixel-wise standardized anomalies of 
the above indicators were calculated. The standardized anomalies 
were calculated as deviations from multi-year averages, normalized 
using standard deviations from 2000 to 2020. The calculation of the 
standardized anomaly follows (Liu et al., 2021; Wang et al., 2019):

where SA(i, j, t) is the standardized anomaly of pixel (i, j) at time t; X(i, 
j, t) is the original values of the pixel (i, j) at time t; X(i, j, m) is the mean 
value of pixel (i, j) in the mth month of each year from 2000 to 2020; 
SD(i, j, m) is the standard deviation of pixel (i, j) in the mth month of each 
year from 2000 to 2020. The m, ranging from 1 to 12, denotes the mth 
month of the year.

2.2.2  |  Binning

The impact of Ts and SM on SIF was decoupled utilizing bins, as 
Liu, Gudmundsson, et al. (2020) showed that binning could decou-
ple the two variables to a large extent. Based on the standardized 
anomaly data, we determined segmentation thresholds for each 
pixel of SASM and SATs, which were applied to bins of the data. 
The data of all variables were divided into eight bins, i.e., [−2.−1.5), 
[−1.5.−1), [−1.−0.5), [−0.5.−0), [0.0.5), [0.5.1), [1.1.5), and [1.5.2], 
depending on SATs or SASM. Next, within each SATs bin (i = 1, 2,..., 
8), the ranking from minimum Φi,min to maximum Φi,max was deter-
mined based on the ith SATs bin and the threshold value. Similarly, 
in each SASM bin ( j = 1, 2,..., 8), the ranking from minimum θ j,min to 
maximum θj,max ranking was determined by the jth SASM bin and 
the threshold value. Data were eliminated if they were less than 
10 in each bin.

The mean values of bins were used to quantify the effect of SM 
and Ts on SIF. Excluding the SM-Ts coupling, the influence of Ts on 
SIF is denoted as △SASIF (SATs|SASM). In this study, we calculated 
the difference between the highest SATs and the lowest SATs corre-
sponding to SASIF in each SASM binning (△SASIF (SATs|SASM)), which 
was given by (Liu, Gudmundsson, et al., 2020):

(1)SA (i, j, t) =
X (i, j, t) − X (i, j,m)

SD (i, j,m)
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where I is the total number of bins SATs; i is the index number of the 
ith SATs bins; Φi,min and Φi,max are the sequential numbers correspond-
ing to the minimum and maximum of SATs in the ith SASM bin.

Similarly, excluding the SM-Ts coupling, the influence of SM on 
SIF is denoted as ∆SASIF (SASM|SATs), which stemmed from the varia-
tion of high SASM to low SASM on SASIF in each SATs bin. The calcula-
tion follows Liu, Gudmundsson, et al. (2020):

where J is the total number of bins SASM; j is the label of the jth SASM 
bin; θj,min and θj,max are the sequential numbers of the jth SATs bin cor-
responding to the smallest and largest SASM. Studies have shown that 
the responses of plant photosynthesis to SM and Ts can be non-linear 

(Green et al., 2019; Sage & Kubien, 2007), and our approach is able to 
capture such non-linearity.

2.2.3  |  Partial correlation coefficient

To better understand the independent effects of Ts and SM on 
SIF, we adopted the partial correlation method at the pixel level 
to analyze the correlation between Ts and SIF (referred to as R (Ts, 
SIF|SM)), excluding the influence of SM. Similarly, we also analyzed 
the correlation between SM and SIF (called R (SM, SIF|Ts)), excluding 
the impact of Ts. The partial correlation formula was:

where R(1,2|3) is the partial correlation coefficient between variable 1 
and variable 2 after controlling for the linear effect of variable 3; R12, 

(2)ΔSASIF

(
SATs|SASM

)
=

1

I
×

I∑

i=1

(
SASIFi,�i,max

− SASIFi,�i,min

)

(3)ΔSASIF

(
SASM|SATs

)
=

1

J
×

J∑

j=1

(
SASIFj,�j,max

− SASIFj,�j,min

)

(4)R(1,2|3) =
R12 − R13 × R23√
1 − R2

13
×

√
1 − R2

23

F I G U R E  1  The technical flowchart of this study [Colour figure can be viewed at wileyonlinelibrary.com]
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R13, and R23 are correlation coefficients between variable 1 and variable 
2, variable 1 and variable 3, and variable 2 and variable 3, respectively.

3  |  RESULTS AND DISCUSSION

3.1  |  Spatial and temporal trends of global Ts, SM, 
and SIF

Many pieces of evidence have suggested an increasing trend of 
global Ts. Our results suggest that the increases in Ts were heteroge-
neous from spatial and temporal perspectives (Figure 2a, Figures S1a 
and S2a). The Ts trends from 1901 to 2020 from the global climate 
dataset observed by the CRU were analyzed. From Figure S1a, we 
observed that the Ts dynamics could be divided into two major time 
periods: the first period, i.e., 1901–1980, showed a slow Ts increase 
(0.00342°C a−1), and the second period, i.e., 1980–2020, showed an 
exacerbated increasing rate (0.03123°C a−1), about 10 times of that 
before 1980. From Fig. 2a, 87.59% of the Ts increase from 2000 to 
2020 in the vegetated areas, within which 56.19% of the increase is 
at the 95% significance level (Figure S2a). The pixel-wise frequency 
of warming from 2000 to 2020 relative to 1980 to 1999 was concen-
trated from 60% to 90% (Figure S3a, d).

Similar to Ts, the global trend of SM reduction presents a hetero-
geneous pattern in time and space (Figure 2b, Figures S1b and S2b). 
The trend of SM was analyzed using GLEAM assimilated global raster 
surface SM and root SM from 1980 to 2020. Figure S1b and c demon-
strated a decreasing trend of surface SM (−0.00009865 m3 m−3 a−1) 
and root SM (−0.00007324 m3 m−3 a−1), respectively, which was con-
sistent with the findings of existing studies (Albergel et al., 2013; 
Deng et al., 2020). Figure 2b revealed that 51.23% of the vegetated 
areas experienced a decline in SM, and 26.78% of them reached the 
95% significance level (Figure S2b). Figure S3b showed that pixel-
wise frequency of SM reduction was concentrated between 40% 

and 70% from 2000 to 2020 relative to 1980 to 1999. In addition, 
the pixel-wise frequency of Ts increase and SM decrease was fo-
cused at 25% to 55% (Figure S3c).

From Figure 2c, 75.60% of the areas presented an increase in 
SIF, of which 47.41% showed increased SIF at the 95% significance 
level. Huang et al. (2019) concluded that Ts did not reach the opti-
mum temperature for vegetation photosynthesis. Hence, a higher Ts 
is expected to further enhance vegetation photosynthesis, leading 
to an increased SIF. Besides, Liu, Gudmundsson, et al. (2020) stated 
that SM was positively correlated with SIF. Therefore, a reduction in 
SM would inhibit vegetation photosynthesis. The global distribution 
of areas with increased SIF was not fully consistent with the distri-
bution of areas with increased Ts and SM (Figure 2). In particular, 
inconsistency in SIF changes occurred for areas with increased Ts 
and decreased SM and areas with decreased Ts and increased SM. 
Therefore, the independent effect of Ts and SM on the productivity 
of global ecosystems remains unclear.

3.2  |  Coupling of Ts and SM affects ecosystem 
productivity

The soil-vegetation-atmosphere environments are strongly inter-
twined with a complicated mechanism. The difficulty in unraveling 
the respective effects of SM and Ts on ecosystem productivity 
stemmed from the strong coupling of SM and Ts (Koster et al., 2006; 
Seneviratne et al., 2010; Sonia et al., 2010). Rising Ts leads to in-
creased evapotranspiration, which in turn leads to further soil drying; 
decreasing SM results in reduced evapotranspiration, which in turn 
causes elevated Ts. Because of strong SM-Ts coupling (Figure 3c, e), 
both high Ts and SM were correlated with high ecosystem GPP indi-
cated by SIF (Figure 3a, b). From Figure 3d, e, we observed that SIF 
was strongly correlated with GPP at the global scale. The correlation 
coefficients between Ts and SIF were generally positive at the global 

F I G U R E  2  The trend of global Ts, SM, and SIF from 2000 to 2020. (a) Ts trend from 2000 to 2020. (b) SM trend from 2000 to 2020. (c) 
SIF trend from 2001 to 2020. (d) Distribution of relative frequencies (%) of decreases and increases in Ts, SM, and SIF [Colour figure can be 
viewed at wileyonlinelibrary.com]
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scale (Figure 2e) but were negative near the equator and in south-
ern Australia (Figure 3a). The correlations between SM and SIF were 
positive at low latitudes and southern hemisphere (except tropical 
rainforests) but negative at middle and high latitudes in the north-
ern hemisphere (Figure 3b, e). Given the strong SM-Ts coupling, 
in regions with high SM and high Ts, the correlation between SM 
and SIF might be a byproduct of the correlation between Ts and SIF 
and vice versa. In regions with high Ts but low SM, the correlation 
directions between Ts and SIF were not consistent. Thus, the cor-
relation between SM and Ts constituted an often-overlooked con-
founding factor when assessing the role of SM and Ts on ecosystem 

productivity. In the tropics, correlations between SIF and SM or SIF 
and Ts remained weak, indicating the possible influence of CO2 con-
centration, nitrogen deposition or radiation effects, which need to 
be further explored.

3.3  |  Decoupling the impacts of Ts and SM on SIF

There existed a strong negative correlation between SM and Ts, 
evidenced by the observations that low SM was always accompa-
nied by high Ts (Figure 3c, e), which was consistent with previous 

F I G U R E  3  The strong coupling of Ts and SM confuses the impact on ecosystem productivity. (a) Spatial distribution of Pearson's correlation 
coefficients between solar-induced chlorophyll fluorescence and temperature (R(Ts,SIF)). (b) Spatial distribution of Pearson's correlation 
coefficients between solar-induced chlorophyll fluorescence and soil moisture (R(SM,SIF)). (c) Spatial distribution of Pearson's correlation 
coefficients between temperature and soil moisture (R(Ts,SM)). (d) Spatial distribution of Pearson's correlation coefficients between solar-
induced chlorophyll fluorescence and gross primary productivity (R(GPP,SIF)). (e) Violin plots of correlation coefficients between Ts and SIF, 
SM and SIF, Ts and SM, and GPP and SIF, respectively. The red dots indicate the median values, the rectangular boxes cover the interquartile 
range, and thin lines reach the 5th and 95th percentiles. When the correlation coefficient is greater than 0.124 and 0.126 or less than −0.124 
and −0.126, it reaches the 95% and 99% significance level, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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studies (Koster et al., 2006; Seneviratne & Stöckli, 2007; Sonia et al., 
2010). Liu, Gudmundsson, et al. (2020) revealed that the interaction 
between SM and VPD could be well decoupled with a binning ap-
proach. Therefore, we decoupled SM-Ts from −2 to 2 (95.45% of the 
total data) at intervals of 0.5 to 8 bins based on standardized anom-
aly data of SM or Ts. The analytical hypothesis of this study was that 
if SM dominated ecosystem productivity, high SM would promote 
ecosystem productivity regardless of changes in Ts, and if Ts played 
a dominant role in ecosystem productivity, then high Ts would pro-
mote ecosystem productivity independent of changes in SM.

To further validate the above hypothesis, we utilized global veg-
etation averages for illustration. Without decoupling SM-Ts, it was 
difficult to determine whether the increase in SIF was caused by high 
SM, high Ts, or a combination of both. When observing the change in 
SASIF on the SATs gradient in the SASM bin (without SM-Ts coupling), 
high SATs led to increased SASIF, but SASIF remained unchanged in the 
high SASM case (Figure 4a). In addition, high SASM also resulted in an 
increase of SASIF in the SATs bin, but high SASM decreased SASIF in the 
high SATs sub-box (Figure 4b). The above results indicated that both 

high SATs and high SASM could increase SASIF for conditions without 
SM-Ts coupling at the global scale. In other words, the notably in-
creased SASIF suggested that neither SATs nor SASM was a byproduct 
of SM-Ts coupling. The respective impact of SASM and SATs on SASIF 
was also shown in Figure 4c. Without SM-Ts coupling, changes in 
SASIF from low SATs to high SATs (called △SASIF(SATs|SASM)) could 
quantify the magnitude of SATs's effect on SASIF. Likewise, without 
SM-Ts coupling, changes in SASIF from low SASM to high SASM (called 
△SASIF (SASM|SATs)) could quantify the extent of the effect of SASM 
on SASIF. In this study, the effects of SM and Ts on SIF were evalu-
ated via two methods, (1) using the SASIF in the largest SASM interval 
minus the SASIF in the smallest SASM bins or the SASIF in the highest 
SATs interval minus the SASIF in the lowest SATs bins, and (2) using the 
partial correlation coefficient to analyze the effect of SM (called R 
(SIF, SM|Ts)) or Ts (R (SIF, Ts|SM)) on the magnitude of the SIF. From 
Figure 4c, Ts (△SASIF (SATs|SASM) = 0.8164) has a stronger correla-
tion with △SASIF compared with SM (△SASIF (SASM|SATs) = 0.4587). 
Therefore, the comparison of △SASIF (SATs|SASM) and △SASIF 
(SASM|SATs) could determine the importance of the respective 

F I G U R E  4  Decoupling the effects of Ts and SM on ecosystem productivity. (a) Monthly standardized anomalies of SIF and Ts, binned by 
SM standardized anomalies; circles indicate mean SIF standardized anomalies within each bin of SM standardized anomalies. (b) Monthly 
standardized anomalies of SIF and SM, binned by Ts standardized anomalies; circles denote mean SIF standardized anomalies within each bin 
of Ts standardized anomalies. (c) the mean SIF standardized anomalies in each bin of standardized anomalies of Ts and SM; horizontal numbers 
represent the Ts influence on SIF without Ts-SM coupling (△SASIF(SATs|SASM)); vertical numbers represent the SM influence on SIF without 
Ts-SM coupling (△SASIF (SASM|SATs)). (d) standardized anomalies of Ts and SM under different conditions of SIF standardized anomaly box 
plot distributions; circles indicate SIF standardized anomalies values for each condition; red squares indicate the corresponding mean [Colour 
figure can be viewed at wileyonlinelibrary.com]
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factors in the SM-Ts coupling. In addition, the partial correlation 
coefficient based on the mean of global variables showed that Ts 
((SIF, Ts|SM) = 0.759, p < .001) was more strongly correlated with SIF 
than SM (R(SIF,SM|Ts) = 0.418, p = .075). Thus, the results from both 
methods were consistent, indicating a stronger role of Ts in terms 
of promoting global ecosystem productivity than SM. Moreover, 
Figure 4d revealed that when both SASM and SATs were less than 0, 
the mean value of SASIF was −0.309; when SASM < 0 but SATs > 0, 
the mean value of SASIF was −0.083; when SASM > 0 but SATs < 0, 
the mean value of SASIF was −0.126, and when both SASM and SATs 
is greater than 0, the mean value of SASIF became 0.245. Thus, high 
SASM and high SATs could jointly promote ecosystem productivity, 
but SATs enhanced it in a stronger manner than SASM.

Although the increase in Ts promoted vegetation productivity 
more than SM at the global scale, the large variation in root depth 
across vegetation types (e.g., forests and grasslands) might underes-
timate the impact of SM (only considering relatively superficial SM). 
However, deep SM could also be associated with deep-rooted veg-
etation growth (Humphrey et al., 2018). Thus, we further explored 
the degree of influence of Ts and SM on different vegetation types. 
Without SM-Ts coupling, evergreen broadleaf forest (Figure S4), 
mixed forest (Figure S5), and woody savannas (Figure S7) failed to 
promote SASIF from low SASM to high SASM, but showed a remark-
able promotion of SASIF from low SATs to high SATs; where the SASM 
of either binning had a trivial increase in SASIF at high SATs. In the lack 
of SM-Ts coupling, SASIF increased in savanna (Figure S8) from low 
SASM or SATs to high SASM or SATs, but SATs promoted SASIF increase 
less than evergreen broadleaf forest, mixed forest, and woody sa-
vannas, and SASM led to a slightly increasing trend of SASIF. In the 
absence of SM-Ts coupling, open shrublands (Figure S6), grassland 
(Figure S9), and crops (Figure S10) showed a greater contribution to 
SASIF increase from low SASM to high SASM than SATs. Without SM-
Ts coupling, low vegetation cover in (Figure S11) displayed a clear 
tendency to promote SASIF increase from low SASM to high SASM, 
and only a slight trend to increase SASIF from low to high SATs in high 
SASM conditions. Thus, there were differences in response to Ts and 
SM for vegetation types with different root depths. Regions with a 
lower proportion of trees were more sensitive to SM response at the 
global scale, which was consistent with previous findings (Walther 
et al., 2019) and could further confirm the validity of the results in 
this study. In comparison, areas with higher proportions of trees 
were more sensitive to the response of Ts at the global scale. Thus, 
the results revealed the disparity in dominant factors of productivity 
among vegetation types, providing essential evidence that benefits 
future investigation on the factors the influence ecosystem produc-
tivity at regional or global scales.

Next, we explored the global effects of the individual SM and Ts 
on the SIF at the pixel level. To ensure spatial comparability, the SIF 
was standardized anomalies at the pixel level, taking values within 
plus and minus two standard deviations, respectively. As shown in 
Figure 5a, b, positive values of △SASIF (SATs|SASM) accounted for 
84.80% of the global vegetation cover, suggesting that high SATs 
played a strong role in promoting SASIF. Moreover, the increase in 

ecosystem productivity at high latitudes was mainly influenced by 
elevated Ts, consistent with the findings of Liu, Wennberg, et al. 
(2020). However, the proportion of △SASIF (SATs|SASM) less than 
0 accounted for only 15.20%, which was mainly distributed near 
the equator and in tropical and subtropical regions at low latitudes 
(southern North America, South America, Africa, and southwestern 
Asia and Australia). From Figure 5c, d, the percentage of positive 
ΔSASIF(SASM|SATs) was 64.08%, also indicating that high SASM pro-
moted SASIF, which was consistent with our understanding of vege-
tation physiology and the findings of previous studies (Seneviratne 
& Stöckli, 2007; Stocker et al., 2018). ΔSASIF (SASM|SATs) was found 
to be negative at high latitudes, i.e., northern South America and 
central Africa. At high latitudes, elevated Ts promoted vegetation 
productivity, but high SM limited vegetation productivity (Figure 5a, 
c). In the tropics and subtropics near the equator, increased Ts led 
to reduced vegetation productivity (Figure 5a), and the productiv-
ity of high trees might not respond to surface SM precisely so that 
forests with increased SM have seen declined productivity. In ad-
dition, we obtained similar spatial distributions using GOME-2 SIF 
data with a decoupling method to analyze the effects of Ts and SM 
on productivity (Figure S12). Moreover, decoupling Ts-SMroot re-
vealed that the impact of Ts and SMroot on ecosystem productivity is 
highly consistent with Ts and surface SM (Figure 5 and Figure S15). 
Globally, changes from the lowest SATs to the highest SATs under 
a constant SASM improved SASIF by 26.50% on average. However, 
changes from the driest to the wettest SASM for constant SATs raised 
SASIF by 16.52% on average. The effect of SATs on SASIF at the pixel 
level over SASM was mainly concentrated in the middle and high 
latitude regions (Figure 5e, f). SASM was more important than SATs 
in 40.18% of the globe, which was mainly distributed in the middle 
and low latitudes (Figure 5e, f). If changes in Ts and SM own the 
same magnitude of impact on terrestrial ecosystem productivity, 
when SATs + SASM  =  0, SASIF is expected to be 0. Thus, the pixel 
with SATs + SASM < 0.001 (indicating the same magnitude of Ts and 
SM changes) was filtered globally. When SATs < 0 (or SATs > 0), i.e., 
SASIF  =  −0.01805  <  0 (or SASIF  =  0.00221  >  0), it indicates that 
the effect of Ts changes on ecosystem productivity is greater than 
that of SM changes. However, Humphrey et al. (2021) revealed that 
soil moisture-atmosphere feedback could dominate the changes in 
carbon uptake in terrestrial ecosystems, where SM changes play 
a major role in influencing global land carbon uptake variability. 
Two main reasons are behind the discrepancy from our study and 
Humphrey et al. (2021): first, different indicators were analyzed. 
In this study, we analyzed terrestrial ecosystem productivity (i.e., 
GPP), while Humphrey et al. (2021) analyzed terrestrial ecosystem 
carbon uptake (i.e., Net biome productivity, NEP, where NEP equals 
GPP minus autotrophic respiration, heterotic respiration, and photo-
synthetic products consumed by natural and anthropogenic distur-
bances). Second, different analytical methods were employed. We 
used the decoupling method to study the magnitude of the contri-
bution of temperature and soil moisture changes to GPP changes, 
respectively, while Humphrey et al. (2021) considered the extent of 
soil moisture-atmosphere feedback effects on NEP changes.
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F I G U R E  5  Global impacts of Ts and SM on ecosystems production. (a, c, and e) indicate that the spatial distribution of SIF changes due 
to high Ts (△SASIF (SATs|SASM)), high SM (△SASIF (SASM|SATs)), and their absolute differences (△SASIF (SATs|SASM) − △SASIF (SASM|SATs)), 
respectively. (b, d, and f) reveal the mean values of Ts and SM influence on SIF and their differences in absolute values. The black line 
indicates the mean, and the red shaded bands indicate the standard deviation [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  6  Global spatial patterns correlations between SIF with Ts and SM. (a, c, and e) reveal the partial correlation coefficients of SIF 
with Ts (R(SIF, Ts|SM), (SM is the control variable)), SM (R(SIF,SM|Ts), (Ts is the control variable)), and their absolute differences (R(SIF, Ts|SM) 
- R(SIF,SM|Ts)) at monthly basis from 2000 to 2020. (b, d, and f) reveal the mean values of the partial correlation coefficients between 
SIF and Ts, SM, and their differences in absolute values. The black line indicates the mean value, and the pink shaded band indicates the 
standard deviation [Colour figure can be viewed at wileyonlinelibrary.com]
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In addition, partial correlation analysis showed that SIF was 
significantly correlated with Ts when excluding the effect of SM 
(Figure 6a, b). As shown in Table 1, 89.70% (87.56% (p < .05)) of the 
valid vegetation areas were positively correlated. Negative correla-
tions (10.30% (p < .05)) were found in northeastern North America, 
India, northeastern Africa, and parts of southwestern Australia 
(Table 1 and Figure S14a, c). From Figure 6c, d, the proportion of 
positive partial correlations (excluding the effect of Ts) between SIF 
and SM was 54.23% (51.68% (p < .05)) (Table 1 and Figure S14a, c). 
However, areas where the negative correlation accounts for 45.77% 
(p < .05) of the global vegetation were mainly distributed in the mid-
dle and high latitudes and northwest South America (Table 1 and 
Figure S14a, c). Regions where the impact intensity of Ts on SIF 
(R(SIF, Ts|SM)) was more than SM (R(SIF,SM|Ts)) were widespread, es-
pecially along the latitudinal gradient (Figure 6e, f). Overall, 71.86% 
of the terrestrial vegetation areas showed above 0 values in R(SIF, 
Ts|SM)-R(SIF,SM|Ts), mainly distributed in middle and high latitudes 
and South America. In comparison, 28.14% of the terrestrial vege-
tation areas showed below 0  values in R(SIF, Ts|SM)-R(SIF,SM|Ts), 

mainly distributed in the middle and low latitudes (Africa, India, 
Australia, and some regions of South America). Moreover, areas with 
|R(SIF, Ts|SM)|-|R(SIF,SM|Ts)| greater than 0 accounted for 64.17%, 
indicating that in almost two-thirds of areas, Ts is more correlated 
with SIF than SM. Meanwhile, the spatial distribution of SIF we ob-
tained is consistent with the one from GOME-2 SIF data (Figure S13). 
In addition, the spatial distribution of the partial correlation between 
SIF and Ts, SMroot was highly consistent with those between SIF and 
Ts, surface SM (Figure 6 and Figure S16). The results from the partial 
correlation analysis indicated that Ts played a more important role 
than SM for vegetation productivity at the global scale. The analysis 
using SM-Ts bins decoupling also confirms the validity of this claim.

3.4  |  Sensitivity of Ts and SM on climate and 
vegetation gradient

In this study, we found that the promotion by SATs (ΔSASIF(SATs|SASM)) 
was the greatest in humid ecosystems (ΔSASIF(SATs|SASM)  =  1.0

Partial correlation Positive
Positive 
p < .05 Negative

Negative 
p < .05

R(SIF, Ts|SM) 89.70% 87.56% 10.30% 10.30%

R(SIF,SM|Ts) 54.23% 51.68% 45.77% 45.77%

R(SIF, Ts|SM)-R(SIF,SM|Ts) 71.86% – 28.14% –

R(SIF, Ts|SMroot) 91.34% 86.73% 8.66% 4.90%

R(SIF,SMroot|Ts) 55.74% 48.56% 44.26% 31.77%

R(SIF, Ts|SMroot)-
R(SIF,SMroot|Ts)

73.12% – 26.88% –

TA B L E  1  Partial correlations between 
SIF and Ts, surface SM (referred to as SM) 
and root SM (SMroot), respectively

F I G U R E  7  Sensitivity of Ts and 
SM to the gradient of climate and 
vegetation gradients. (a) Violin plot of 
Ts (△SASIF(SATs|SASM)) effects on the 
aridity gradient. (b) Violin plot of SM 
(△SASIF(SASM|SATs)) effects across an 
aridity gradient. (c) Sensitivity of SIF under 
different climatic conditions. The dashed 
lines indicate the linear regressions of 
SIF standardized anomaly versus aridity 
values, and the Slope values represent the 
regression coefficients of SIF standardized 
anomaly with aridity index (AI) [Colour 
figure can be viewed at wileyonlinelibrary.
com]
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74  ±  0.456) and the smallest in semi-arid ecosystems (ΔSASIF(SATs​
|SASM)  =  0.176  ±  0.367) (Figure 7a), e.g., scrub, grassland, and sa-
vanna ecosystems. Comparatively, the facilitation effect of SASM 
(ΔSASIF(SASM|SATs)) was apparent in arid (ΔSASIF(SASM|SATs) = 1.620 
± 0.369), semi-arid (ΔSASIF(SASM|SATs) = 1.528 ± 0.337) ecosystems, 
and the facilitation effect in humid ecosystems (ΔSASIF(SASM|SATs) 
= 0.111 ± 0.507) was trivial (Figure 7b). Semi-arid ecosystems were 
major drivers of global terrestrial CO2 flux changes (Ahlstrom et al., 
2015; Poulter et al., 2014). The increases in SM are believed to have a 
higher impact on vegetation productivity in arid and semi-arid regions 
than Ts. In addition, as SM is experiencing a decreasing trend globally 
(Deng et al., 2020), and the dryland area is predicted to be expand-
ing (Huang et al., 2015), the impact of SM on the global carbon cycle 
is expected to increase in the future. In addition, deforestation and 
degradation of tropical rainforests were important drivers of global 
CO2 flux changes in terrestrial ecosystems (Qin et al., 2021). The re-
sults of our study showed that in the humid zone, the variation of Ts 
played a more important role in vegetation productivity, but in the 
arid and semi-arid zones, the variation of SM played a more important 
role in vegetation productivity; in the semi-humid zone, the disparity 
in the importance of SM and Ts is difficult to unravel.

The role of drought stress on vegetation photosynthetic CO2 
assimilation was considered as one of the largest uncertainties in 
predicting future land carbon uptake and climate change (Hagemann 
et al., 2013; Prudhomme et al., 2014). However, empirical functions 
(usually not validated against observed empirical data) that depend 
only on plant functional types were usually in terrestrial ecosystem 
models to capture drought stress (Dai et al., 2003). In this study, we 
explored the sensitivity of SASIF to AI. The aridity sensitivity of SASIF 
showed inconsistent patterns with climate gradient. The sensitivity 
of SASIF to AI fluctuated, with increased climate wetness, peaking in 
arid and semi-arid zones (Figure 7c), which was similar to the finding 
by Liu et al. (2018). Therefore, we believe the results of this study 
are able to provide suggestions for the improvement of terrestrial 
ecosystem models.

4  |  CONCLUSIONS

Taking advantage of SIF, Ts, and SM data from 2000 to 2020, we 
decoupled the joint impact of Ts and SM on global ecosystem pro-
ductivity using bin decoupling and partial correlation analysis. The 
results indicated that Ts contributed more to ecosystem productiv-
ity than SM in global vegetation-covered regions. However, the im-
portance of SM and Ts varied, given different vegetation types. The 
results showed that in the humid zone, the variation of Ts played a 
more important role in vegetation productivity, but in the arid and 
semi-arid zones, the variation of SM played a more important role; in 
the semi-humid zone, their relative importance is difficult to unravel. 
We thus argue the necessity of re-evaluating whether a warming 
climate can further promote vegetation growth by considering the 
different roles of Ts and SM on different vegetation types. The re-
sults of this study can be implemented into the terrestrial ecosystem 

model to better predict vegetation productivity at regional and 
global scales, reducing uncertainty in the assessment of CO2 uptake 
from terrestrial vegetation and providing more insight into the re-
sponse of vegetation to climate change.
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