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Road and Car Extraction Using UAV Images via
Efficient Dual Contextual Parsing Network
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Abstract— The rapid development and commercialization of
unmanned aerial vehicle (UAV) technology has made it possible to
conduct urban traffic information extraction using UAV images.
However, the large variations of targets in urban environments,
complex foregrounds and backgrounds in cities, and severe
tree and shadow occlusions pose great challenges in car and
road extraction using UAV images. In this study, we propose a
lightweight, efficient dual contextual parsing network (EDCPNet)
to address the above issues. The proposed efficient dual contextual
parsing (EDCP) module in EDCPNet is mainly composed of
spatial contextual parsing (SCP) and channel contextual parsing
(CCP), which can effectively acquire rich contextual features
in both spatial and channel dimensions, adaptively recalibrate
the attention weights, perceive the salient features of targets
in images, and suppress the importance of irrelevant elements.
It, thus, leads to improved performance and adaptability that
facilitate the practical applications of large-scale urban traffic
monitoring in complex urban scenes. We conduct experiments on
two benchmark datasets [UAV image dataset (UAVid) and urban
drone dataset (UDD)] by comparing the proposed EDCPNet with
six other competing methods, i.e., U-Net, PSPNet, Deelabv3+,
SegNet, ESNet, and ERFNet, and validate the effectiveness of the
proposed EDCP module via extensive ablation studies. The results
suggest that the proposed network outperforms all competing
methods in car and road extraction from UAV images with a
balanced computational cost. Its great performance and low
computational demand (with only 2.37M model parameters)
facilitate its deployment on edge computing devices with memory
constraints.

Index Terms— Attention mechanism, car extraction, light-
weight network, road extraction, unmanned aerial vehicle (UAV)
images.
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I. INTRODUCTION

THE rapid development of unmanned aerial vehicle (UAV)
technology allows consumers from various fields to

receive high spatial resolution aerial images in a more easy
and economically friendly manner [1]. UAV remote sensing
images are being gradually applied in various fields, such as
land and resource surveys [2], urban construction and planning
[3], agricultural production [4], natural disasters [5], and crisis
management [6]. Even today, the number of flights of different
types of UAVs is still increasing, with a developing trajectory
toward high definition, miniaturization, and high endurance
time. UAV remote sensing plays an increasing role in urban
management as data support. Among many UAV-based tasks,
traffic monitoring is considered one of the main challenges
that remain unsolved [7], [8], [9].

In the task of traffic monitoring, in addition to the extraction
of the car, retrieving road locations in images is equally
important for the collection of traffic information and road
surface information. As important research objects in traffic
engineering science, road targets and car targets have been
investigated in traffic management, traffic prediction, traffic
planning, traffic control and guidance, and traffic command,
to list a few [10]. Traditional road and car extraction surveys
are mostly based on static surveillance cameras or satellite-
based remote sensing platforms; however, static surveillance
cameras have a limited field of view and are prone to blind
spots, and satellite-based remote sensing platforms cannot
meet the traffic monitoring requirements for real-time infor-
mation [11]. In comparison, the UAV platform is more flexible
and mobile, able to obtain better details of road surfaces and
cars, support controlled flight paths, and capture multiview
images (broader detection scope). They are not limited by plat-
form revisit intervals and are not limited by road congestion,
which is especially important in traffic regulation tasks that
require rapid response, providing an ideal platform for car
and road extraction.

With the current popularity of artificial intelligence and
deep learning, the trend of using convolutional neural net-
works (CNNs) to extract information from images has been
increasingly evident since the birth of AlexNet [12] in 2012.
Among them, Long et al. [13] proposed a fully convolutional
network (FCN) that consists of an encoder and a decoder,
where the encoder is similar to a traditional CNN extracting
deep abstract features and the decoder recovers these features
into a prediction map of the same size as the input image.
FCN uses convolutional layers instead of fully connected
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layers to achieve end-to-end semantic segmentation, overcom-
ing the inefficiency of sliding window-based CNN methods
that can extract semantic text information while preserving
the target spatial information [14]. Building upon the basic
FCN model, U-Net [15], DeconvNet [16], and SegNet [17]
adopt an encoder–decoder structure to fuse the deep features
in a top-to-low layer manner and improve the segmentation
accuracy. Most of the deep learning algorithms used for road
extraction are based on CNN and FCN [18]. Zhang et al. [19]
improved the U-net by combining residual learning to improve
the generalization ability of the network model while reducing
the number of parameters by multilayer jump connections.
Wan et al. [20] used a shallow encoder–decoder framework
with densely connected blocks to build DA-Road Net, which
reduces information loss and integrates road features in spatial
and channel dimensions to improve road extraction continuity.
DA-CapsUNet [21] is a dual-attention capsule U-Net with fea-
ture attention modules to extract and fuse multiscale contextual
information to enhance road extraction accuracy. In summary,
deep learning can extract deep abstract features hidden in
images and has a better performance on complex scenes.
There are also many studies on UAV image road extraction.
Kestur et al. [22] proposed a U-shaped FCN (UFCN) for road
extraction and demonstrated its great potential for UAV image
road extraction, but the dataset used was small and the network
failed to be well trained. Varia et al. [23] applied the fully
convolutional network FCN-32 and the generative adversarial
network (GAN) for UAV road extraction. However, it is prone
to misclassifying nonroad regions as road regions in certain
regions of high complexity, reducing the completeness and
accuracy of the final output. Senthilnath et al. [24] used deep
transfer learning with ensemble classifier (TEC) (deep migra-
tory learning with integrated classifiers) for road extraction
from UAV images, using conditional GANs, recurrent GANs,
and FCNs to pretrain and then integrate the classification;
however, the integration of multiple deep learning networks
caused a decrease in computational efficiency.

Existing car extraction methods can be roughly classified
into two categories: car detection and car semantic segmen-
tation. The purpose of car detection is to detect all cars and
locate them in the image, usually in the form of bounding
boxes with confidence scores [25], [26], [27]. In contrast,
semantic segmentation of the car can determine the car range
by classifying each pixel in addition to localization. Compared
with car detection, it can give more accurate pixel extrac-
tion results and can better determine the car’s conditions.
In particular, using only bounding box detection is not a
good solution in the case of high car traffic [28]. A relatively
small amount of work addresses this problem. In [29], a deep
learning-based “segment-before-detect” method is proposed
for semantic segmentation and subsequent classification of
cars in high-resolution remote sensing images. Masouleh and
Shah-Hosseini [30] combined Gaussian–Bernoulli restricted
Boltzmann machine (GB-RBM) and CNN to improve the
performance of a deep learning model for segmenting ground
cars from UAV-based thermal infrared images. Masouleh and
Shah-Hosseini [31] combined a deep CNN and an RBM
to construct RBMDeepNet to achieve semantic segmenta-

tion of cars from high-resolution airborne images; however,
it is prone to treating the redundant shadow pixels as the
car.

Several research works addressed the problem of simul-
taneous extraction of road and car. DLT-Net [32] proposed
a unified neural network to simultaneously detect drivable
areas and cars, constructing context tensors between subtask
decoders to share specified weights between tasks. Bianco
et al. [33] jointly detected car and lane based on the ERFNet
semantic segmentation network, using weak and strong labels
to combine different annotation sources in order to generate
a new dataset containing all categories of interest. However,
these methods are limited to images from in-car cameras with
a simpler image background, a single view, and no access to
global information about the traffic [34].

In addition, the large variations of targets in urban environ-
ments, complex foregrounds and backgrounds in cities, and
severe tree and shadow occlusions pose great challenges in
car and road extraction on UAV images [35]. Due to the tilted
camera view of UAVs, large variations of objects at different
distances or in different categories in UAV remote sensing
images can occur. In addition, road objects can be so large
that they may exceed the neural network perceptual field, while
small car objects are difficult to identify. In urban scenes, the
backgrounds and foregrounds in UAV remote sensing images
can be complex, while other objects are on the ground. What
is more, the occlusion of trees and shadows can lead to the loss
or misrepresentation of certain road or car features, resulting
in incorrect identification and classification.

The attention mechanism aims to direct the attention of
deep networks to more relevant features of the corresponding
tasks. The attention mechanism acquires weight parameters
and the action of the weight parameters on the original
feature map, thus enhancing the representation of the more
informative features and suppressing the representation of the
less informative features. SENet [36] calibrates the importance
of a channel using channelwise global information. However,
this direct approach by constructing a global representation
fails to consider the dependencies between different feature
values within the same channel. NLNet [37] obtains an
attentional relationship between the feature value of each
position and the feature values of all other positions using
a self-attentive mechanism. This approach, however, demands
massive computational resources. In addition, Woo et al. [38]
proposed CBAM that pools the middle layer feature tensor
of the network along the channel and spatial dimensions,
respectively, and further uses CNN to learn its attention
weights. However, the limited perceptual field of CNNs makes
it difficult to infer the importance of local features using global
information.

To mitigate the aforementioned issues, we propose an
efficient dual contextual parsing network (EDCPNet) for car
and road extraction from UAV remote sensing images. The
main contributions of this article are given as follows.

1) We propose a UAV-based lightweight car and road
extraction network, named EDCPNet, to acquire rich
contextual features and perceive local salient characteris-
tics of salient targets, thus enhancing the model’s ability
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Fig. 1. Overall structure of the proposed EDCPNet.

to resolve target scale variations and perform road and
car detection in complex urban scenes.

2) We propose an efficient dual contextual parsing (EDCP)
module mainly composed of spatial contextual parsing
(SCP) and channel contextual parsing (CCP), which is
capable of acquiring contextual information and global
information about the target in both spatial and channel
dimensions to adapt to the target context and learn richer
feature representations. The proposed EDCP module
can adaptively recalibrate attention weights to perceive
salient features of salient targets in images and suppress
the importance of irrelevant elements by parsing the
target context.

3) We conduct extensive experiments on the UAV remote
sensing semantic segmentation datasets, UAV image
dataset (UAVid) and urban drone dataset (UDD), and
ablation studies to validate the great performance of
the proposed method in both qualitative and quantitative
results.

The rest of this article is organized as follows. Section II
describes the proposed EDCPNet in detail. Sections III and
IV describe the contrast and ablation experimental procedure
in detail and present the experimental results, respectively.
Section V concludes this study.

II. PROPOSED FRAMEWORK

In this section, we describe our proposed EDCPNet in detail.
We first describe the basic structure of the EDCPNet and then
present the key components that include the SCP module,
the CCP module, the EDCP module, and the lightweight
convolutional (LC) module.

The network structure proposed in this article is shown in
Fig. 1. To better adapt to the platform of UAV applications,
in the feature extraction part, we build an LC module for
feature extraction by adopting the inverted residuals and linear
bottleneck structures from the Mobilenetv2 [36], aiming to

reduce the number of parameters in the network while main-
taining the extraction accuracy. The 64 × 64 × 32 feature
maps with eightfold downsampling and the 32 × 32 ×
320 feature maps with 16-fold downsampling are fed into our
EDCP module, which includes the SCP module and then the
CCP module, to integrate and parse the global information
and contextual information of the target. The proposed EDCP
module adaptively recalibrates attention weights to parse the
target context and learn richer feature representations. The
module leads to the perception of the salient features of salient
targets in images, suppressing the importance of irrelevant
elements and establishing cross-dimensional interactions. Fur-
thermore, the 32 × 32 × 256 feature map processed by the
EDCP module is performed by a twofold upsampling and
concatenated to the 64 × 64 × 32 shallow features processed
by the EDCP module with the same spatial resolution. The
fusion of deep and shallow features is a fusion of detailed
features (shallow features) and global features (deep features)
of the target, after which the concatenated features are refined
with a 3 × 3 convolution, followed by a bilinear upsampling
with a multiplicity of 8, so as to generate the final prediction
map.

A. Spatial Contextual Parsing Module

In car and road extraction from UAV images, there exist
huge scale differences between car and road targets; therefore,
attention needs to be focused on various target objects in
different scale contexts.

Inspired by the squeeze-excitation (SE) mechanism [36],
we aim to design a new network with pixel-level attention,
which can extract accurate features of cars and roads. In con-
sideration of that, spatial pyramid structures can extract feature
information at different scales and increase the pixel-level field
of perception but lack context-first attention to features at
different scales, while the simple use of the SE mechanism
cannot effectively extract multiscale features and lacks the
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Fig. 2. Structure of the SCP module. (a) Structure of the SCP module.
(b) Structure of the SP module in SCP.

difference in attention to target objects at different scales.
We combine the attention mechanism and spatial pyramid
to extract precise dense features for pixel labeling. Different
from most existing works, we design the SCP module that
utilizes the SE mechanism at multiple spatial pooling scales
to focus on global, car, and road contextual pixel information
at different scales. The SCP module performs SCP operations,
as shown in Fig. 2(a). The SCP module consists of a spatial
context feature extraction unit and a spatial parsing (SP) unit,
as shown in Fig. 2(b).

U = [u1,1, u1,2, ui, j , . . . , uH,W ] is the input feature, where
ui, j ∈ R1×1×C represents the channel features at each spatial
location, i ∈ {1, 2, . . . , H }, j ∈ {1, 2, . . . , W }, and H , W ,
and C refer to the height, the width, and the number of input
channels, respectively. In the spatial context feature extraction
unit, we use different sizes of average pooling kernels and
step sizes to obtain different subregion spatial grids to further
reduce the loss of contextual information between different
subregions and preserve information of different scales. Con-
sidering the scale of road and car, the size of the spatial grid
is set to 3 × 3 and 6 × 6, respectively, for road and car.
In addition, to obtain a compact and discriminative descriptor,
the size of the average pooling window is set to [2 × W
/(N + 1)] and [2 × H /(N + 1)] in steps of [W /(N +
1)] and [H /(N + 1)] to have approximately 50% overlap on
each side, and the output feature map size is [(N + 1) ×
(N + 1) × C]. To maintain the spatial information of the
features, we upsample the feature maps of different scales to
the size of the original feature maps to obtain the set of spatial
feature maps UPS

UPS = [U, U4, U7]. (1)

Fig. 3. Structure of the CCP module. (a) Structure of the CCP module.
(b) Structure of the CP module in CCP.

In the SP unit, each spatial feature map in the set is first
convolved by a standard 1 × 1 convolution layer to produce
a 2-D spatial attention map q , and qi, j represents a linear
combination of all channels C at a spatial location (i, j) in
that map. The obtained q is activated by a sigmoid function σ ,
and the obtained spatial weight values are used to recalibrate
the feature maps, attaching more importance to the relevant
spatial locations while ignoring the irrelevant ones

Û = [
σ
(
q1,1

)
u1,1, . . . , σ

(
qi, j

)
ui, j , . . . , σ

(
q H,W

)
uH,W

]
. (2)

Then, the feature channel dimension is reduced to 1/4 of
the original one by a 1 × 1 convolution layer, i.e., Ũ = WS ∗
Û , where WS ∈ R1×1×(C/4) to obtain the SCP feature map
set ŨPSA

ŨPSA = [
Ũ , Ũ4, Ũ7

]
. (3)

Finally, the channel dimension of the original feature map
U is reduced to 1/4 of the original one and aggregated with
ŨPSA into the final output feature O, thus accelerating the
model learning and alleviating the gradient disappearance.
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B. Channel Contextual Parsing Module

In CNN, information differs in each channel. The proposed
CCP module performs CCP operations, as shown in Fig. 3(a).
Similarly, the CCP module includes a channel context feature
extraction unit and a channel parsing (CP) unit, as shown in
Fig. 3(b). In the channel context feature extraction unit, the
input feature map U is divided into K parts in the channel
dimension U = [u1, ui , . . . , uK ], and the number of channels
in each part is C � = C/K , i.e., the i th feature map ui ∈
RH×W×C�

, where i ∈ {1, 2, . . . , K }, and K needs to be divided
by C . We further carry out channel information extraction
in different dimensions and obtain the channel feature map
set UPC

UPC = [U, U4, U8] (4)

where U = Wc ∗ U and Wc ∈ R1×1×C�
.

In the CP unit, weights are added to each channel to
highlight the channelwise correlation. First, global average
pooling is used to encode the entire features on the channel
as a global feature to produce a vector S ∈ R1×1×C

sz = 1

H × W

H∑

i

W∑

j

uz(i, j). (5)

To combine the linear information between channels and
reduce the model complexity, a bottleneck structure that
contains two fully connected layers is used, where the first
FC layer is downscaled and then activated using the ReLU
function, and the final FC layer restores the original dimen-
sionality. The channel weight values are then obtained through
the sigmoid layer, which falls between [0, 1]

Ŝ = σ(W2(ς(W1S))) (6)

where ς represents the ReLU activation function, and W1 ∈
RC×(C/r) and W2 ∈ R(C/r)×C represent the fully connected
layers. σ represents the sigmoid activation function, and the
obtained channel weight values recalibrate the feature map

Û = [ŝ1u1, ŝi ui , . . . , ŝcuc]. (7)

Same as the SCP module, the feature dimension is reduced
to 1/4 of the original one by a 1 × 1 convolution layer to
obtain a multiscale set of spatial attention feature maps ŨPC A

ŨPC A = [
Ũ , Ũ4, Ũ8

]
. (8)

Finally, the channel dimension of the original feature map
U is reduced to 1/4 of the original and aggregated with ŨPC A,
forming the final output feature O.

C. Efficient Dual Contextual Parsing Module

We combine two modules, i.e., SCP and CCP described
above, to simultaneously obtain contextual features in both
spatial and channel dimensions and recalibrate the input fea-
tures, which encourages the network to further parse the scenes
of the target context and establish the association of feature
maps spatially and channelwisely. After extensive experiments,
we found that the EDCP module where the SCP modules are
tandem first and channel integration is followed by channel
integration in spatial priority order (see Fig. 4) yields the best
results.

Fig. 4. Structure of the EDCP module.

Fig. 5. Structure of the LC module. (a) Stride = 1 block.
(b) Stride = 2 block.

D. Lightweight Convolutional Module

Mobilenetv1 [39] is a lightweight CNN network proposed
by Google, designed to separate the standard convolutional
process into depthwise convolution (DC) and point convo-
lution (PC). DC assigns a separate convolutional kernel to
each channel of the input feature map for convolution, and
PC convolution uses 1 × 1 convolution to perform standard
convolutional operations on the results of DC. Depthwise
separable convolution (DSC) reduces the total computa-
tion to 1/4 of the standard convolution by decomposition.
At the same time, almost all computations are concentrated
in the 1 × 1 convolution operation, which does not require
reordering in memory, leading to accelerated computation.
Mobilenetv2 [40] introduces inverse residual and linear bottle-
neck structures compared to Mobilenetv1. The inverted resid-
ual structure replaces the 3 × 3 standard convolution with
3 × 3 DSC, which significantly reduces the computational
demand so that a layer of 1 × 1 PC can be added before
the DSC to boost the number of channels, thus leading to
improved performance. After the 3 × 3 DSC, the bottleneck
design is followed by the 1 × 1 PC to reduce the dimension-
ality and summarize the input. The resulting LC module that
we constructed is shown in Fig. 5, with the LC module with
stride = 1 adding residual connections to the LC module with
stride = 2.

E. Loss Functions

The commonly used loss function for classification prob-
lems is the cross-entropy loss

Lce = −
N∑

i=1

pi log(qi) (9)

where pi is the predicted probability value of the i th pixel
of the image, qi is the true value of the i th pixel of the
image, and N is the total number of pixels. In the road
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and car extraction tasks of UAV remote sensing images, the
total number of pixels differs between the extraction target
and the background. Thus, we introduce dice loss to increase
the intersection ratio of predicted and true results during the
training process, which is expected to mitigate data imbalance
issues and improve the extraction accuracy. The dice loss
(Ldice) is computed as

Ldice = 1 − 2
∑N

i=1 pi qi∑N
i=1 p2

i + ∑N
i=1 q2

i

. (10)

The overall loss function L total is a combination of dice loss
and cross-entropy loss: L total = Lce + Ldice.

III. EXPERIMENTAL RESULTS AND ANALYSIS

To evaluate the performance of the proposed EDCPNet in
road and car extraction tasks from the UAV remote sens-
ing images, we conducted experiments on two UAV image
semantic segmentation datasets, i.e., UAVid and UDD. The
details regarding these two datasets and the experimental
settings are described in Sections III-A and III-B, respectively.
Section III-C presents the evaluation criteria used in this arti-
cle. Section III-D presents the comparison results on UAVid
and UDD.

A. Datasets

The UAVid [41] is a semantic segmentation dataset that
contains high-resolution UAV remote sensing images in street
scenes. It contains 300 UAV remote sensing images of 4096 ×
2160 or 3840 × 2160 pixels. Unlike other popular remote
sensing datasets, the UAVid contains images captured from a
tilted photographic view, which brings a large-scale variance
and is more challenging in urban street scenes with complex
foreground–background objects. Due to the large size of the
training set images, we crop 10 000 random nonoverlapping
512 × 512 small patches from the UAVid, whose 8000 are
used as the training set, 1000 as the validation set, and 1000 as
the test set. For our task requirements, each pixel in the image
is labeled as one of three categories: road, car, and background.

The UDD [42] is another semantic segmentation dataset
that contains high-resolution UAV images collected in multiple
cities. It contains a total of 141 UAV remote sensing images
with resolutions of 4000 × 3000 or 4096 × 2160 pixels.
Unlike the UAVid dataset, view angles in UDD vary, and its
images are mainly targeted at urban scenes in living areas,
e.g., residential areas and roads inside the campus. Similarly,
we randomly crop 10 000 patches with 512 × 512 in size
(without overlapping), whose 8000 are used as the training
set, 1000 as the validation set, and 1000 as the test set.
Similarly, each pixel in the image is labeled as either road,
car, or background.

B. Experimental Platform and Parameter Configuration

In the following, we list the hardware configuration of the
algorithm experiment platform.

1) CPU: Intel1 Xeon1 E5-2687W v4 cores at 3.00 GHz;
base frequency: 3.00 GHz; and memory: 16 GB; GPU:
NVIDIA GRID RTX8000-8Q GPU; memory: 12 GB. Batch
size = 16, initial learning rate = 1e-4, and epoch = 100. The
model performs gradient descent using the Adam optimizer,
and the learning rate is reduced to half when the loss value of
the validation set does not drop three times.

C. Evaluation Indicators

The evaluation criteria used in this article are F1 score,
category mean pixel accuracy (MPA), and Mean Intersection
over Union (MIoU) ratio.

We calculate the F1 score with the following formula:
F1 = 2 × P × R

P + R
. (11)

The MPA can be computed as

MPA = 1

k

k∑

i=0

TP

TP + FP
. (12)

The MIoU can be computed as

MIoU = 1

k

k∑

i=0

TP

TP + FN + FP
(13)

where the precision rate P = (TP/TP + FP); recall rate R =
(TP/TP + FN); k is the number of categories; and TP, FP, and
FN, respectively, represent the number of true positives, false
positives, and false negatives.

D. Experimental Results and Analysis

1) Experiments on UAVid: We conduct road and car extrac-
tion experiments on the UAVid dataset. The purpose of these
experiments is to evaluate the performance of the proposed
EDCPNet in complex urban scenarios (common scenarios
for traffic monitoring tasks) and verify the superiority of
EDCPNet compared to other competing algorithms. Selected
detection results obtained by EDCPNet with other compet-
ing algorithms, i.e., U-Net [15], SegNet [17], PSPNet [43],
DeepLabv3+ [44], ESNet [45], and ERFNet [46], are pre-
sented in Fig. 6, while quantitative comparisons with compet-
ing algorithms are shown in Table I.

In general, our EDCPNet method achieves high-quality
segmentation results on the test set of UAVid, presenting
a notable advantage over the other six models. As can be
seen from Table I, compared with other models, the pro-
posed EDCPNet achieves the highest accuracy in the road
and car classes, with MIoU and MPA reaching 86.97% and
94.21%, respectively. The MIoU of the proposed model is
2.02% and 1.38% higher than U-Net and DeepLabv3+, 6.09%
and 6.16% higher than PSPNet and SegNet, and 2.37% and
3.12% higher than the lightweight models ESNet and ERFNet,
respectively. We observe that EDCPNet presents higher clas-
sification accuracy for roads, evidenced by its capability in
accurately segmenting the general road contours. In addition,

1Registered trademark.
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Fig. 6. Semantic segmentation results on the UAVid dataset with U-Net, PSPNet, DeepLabv3+, SegNet, ERFNet, ESNet, and the proposed EDCPNet.

TABLE I

QUANTITATIVE EVALUATION RESULTS ON UAVID DATASET COMPARED WITH OTHER COMPETING METHODS

it significantly improves the classification accuracy in the car
category compared with other methods. The IoU and F1 of
EDCPNet in the car category are, respectively, 3.26% and
2.04% higher than DeepLabV3+, notably outperforming the
other algorithms.

In urban contexts, road features (e.g., lane lines, pedestrian
crossings, and green belts) can be very complex. In addition,
the tilted camera views of UAVs lead to the large-scale
disparity of the extracted objects. Those challenges are usually
coupled with noisy backgrounds and occlusions by trees and

buildings, responsible for the poor road and car extraction
performance from traditional models. However, our model
can effectively alleviate these problems, as shown in Fig. 6.
From Fig. 6(a), we can see that PSPNet and SegNet present
poor extraction results for dense traffic with aggregated car
objects, while ESNet, ERFNet, and U-Net fail to identify
the most distant road patches due to their smaller scale.
In comparison, our method is able to maintain the continuity
of the extracted road under the large-scale disparity. Such an
advantage is important in situations where large-scale traffic
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Fig. 7. Semantic segmentation results on the UDD dataset with U-Net, PSPNet, Deelabv3+, SegNet, ERFNet, ESNet, and the proposed EDCPNet.

supervision is required. Fig. 6(b) shows the problem that often
occurs in urban traffic supervision, where urban roads are
encroached on by irrelevant elements, bringing great traffic
safety hazards. For this complex scene, we notice that our
method can extract road surfaces in an accurate manner,
largely overcoming the interference of irrelevant road informa-
tion. Fig. 6(c) and (d) reflects the performance of all methods
when dealing with tree occlusion issues. It can be seen from
the enlarged part of the figure that the proposed EDCPNet
performs better in terms of extracting cars surrounded and
covered by trees compared with the other six methods. For
the extraction of roads obscured by trees, road extracted by
PSPNet, DeepLabv3+, ESNet, and SegNet is fragmented [see
the enlarged part in Fig. 6(e)], suggesting that these methods
lose attention to the details of lane lines, thus leading to
the lack of road extraction accuracy. Conversely, ERFNet
incorrectly identifies the surrounding open space as a road.
From Fig. 6(f), we observe that DeepLabv3+, ESNet, and
PSPNet misclassify the green belt into the road, while SegNet,
ERFNet, and U-Net misclassify the shaded car into the road.
In comparison, the proposed EDCPNet method addresses these
issues well. The above qualitative analysis, agreeing with
the quantitative evaluations, verifies the superiority of the
EDCPNet method for road and car extraction on the UAVid
dataset.

Considering the number of parameters, our EDCPNet (2.4M
parameters) has much fewer parameters compared to other
deep networks, such as PSPNet (46.7M parameters) and
DeepLab-V3+ (41.2M parameters). The smaller model facil-
itates its deployment on edge computing devices with low
memory constraints, which can be easily applied to UAVs.
On the other hand, EDCPNet has better car and road extraction
outcomes compared to other lightweight networks, such as
ESNet (1.66M parameters) and ERFNet (2.07M parameters).
In summary, our EDCPNet achieves very competitive perfor-
mance with low computational cost, can well overcome the
large-scale variation problem caused by the tilted photographic
view of UAVs, and can well overcome various issues that
include tree occlusions and rich background noises.

2) Experiments on UDD: To validate the effectiveness and
superiority of EDCPNet, we further conduct additional experi-
ments on the UDD dataset. Compared with UAVid, the purpose
of experiments on the UDD is to evaluate the extraction perfor-
mance of the proposed EDCPNet in urban living areas (mainly
residential and campus areas), where complex backgrounds
and building shadows occur. Fig. 7 shows selected detection
results on the UDD test dataset. It can be seen that the overall
extraction results from EDCPNet are, again, superior to the
ones from competing algorithms. Fig. 7 (a) shows a scenario
with complex foreground/background and densely placed car
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Fig. 8. Structure of (a) EDCP-P and (b) EDCP-C modules.

TABLE II

QUANTITATIVE EVALUATION RESULTS ON UDD DATASET COMPARED WITH OTHER COMPETING METHODS

Fig. 9. Precision (%) on the UAVid dataset with Baseline, Baseline + SCP,
Baseline + CCP, EDCPNet-P, EDCPNet-C, and EDCPNet.

beside the road. We observe that our method can extract accu-
rate road surfaces with complete structures, while other meth-
ods tend to misclassify road-independent elements or buildings
into the road. Fig. 7(b) and (c) demonstrates the performance
of methods in terms of overcoming tree shades. Compared
with the other six methods, the proposed EDCPNet presents a
considerably better performance in terms of extracting roads
heavily obscured by trees. The road extracted by U-Net and
SegNet is almost discontinuous and very fragmented. Despite
that PSPNet, DeepLabv3+, ESNet, and ERFNet can also
extract approximate road outlines, their extracted road details
are unsatisfactory, given the existence of many discontinuities
in the extraction results. For car extraction [see Fig. 7(d)], our
method also presents better performance than other competing

Fig. 10. Recall (%) on the UAVid dataset with Baseline, Baseline + SCP,
Baseline + CCP, EDCPNet-P, EDCPNet-C, and EDCPNet.

algorithms. The road in the living areas tends to be narrow and
mostly distributed between buildings; therefore, the shadows
of the buildings have a great impact on the extraction results.
From Fig. 7(e) and (f), DeepLabv3+ and PSPNet tend to
misclassify the shadows of the buildings into the road, while
SegNet and U-Net tend to misclassify the shaded car into the
road. ESNet and ERFNet have false and missed inspections
of the car under the interference of shadows. In comparison,
the proposed EDCPNet method shows high robustness when
dealing with shadow interference.

Table II shows quantitative evaluation results comparing
EDCPNet and other algorithms on the UDD dataset. We notice
that the proposed EDCPNet achieves the highest accuracy in
road and car categories, with MIoU and MPA reaching 76.62%
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Fig. 11. Semantic segmentation results on the UAVid dataset with Baseline, Baseline + SCP, Baseline + CCP, EDCPNet-P, EDCPNet-C, and EDCPNet.

Fig. 12. Relationships between accuracy and model complexity of the
proposed model and its variations.

and 83.51%, respectively. Compared with the PSPNet method,
which has the highest accuracy among other competing meth-
ods, the proposed EDCPNet leads to an improvement of 1.73%
and 1.18% on IoU and F1 in the car category, and 1.56%
and 1.16% of IoU and F1 in the road category. The above
results uniquely verify the superiority of EDCPNet in terms
of extracting both road and car objects on the UDD dataset.

IV. DISCUSSION

In this section, we conduct ablation experiments to verify
the effectiveness of the EDCP module proposed in EDCPNet.
The EDCP module aims to acquire contextual and global
information in both channel and spatial dimensions, adap-
tively recalibrate attention weights, perceive salient features in
images, and suppress the importance of irrelevant elements.
We define the EDCPNet with the removed EDCP module
as the Baseline method. In addition, we perform an in-
depth analysis of the two modules, SCP and CCP, and their

combination methods. In addition to the EDCP model with
spatially prioritized tandem order, the model where the SCP
and CCP modules are arranged in parallel before channel
integration is termed EDCP-P [see Fig. 8(a)]. The model where
the CCP modules are tandem first and channel integration is
followed by tandem SCP modules in channel priority order
is termed EDCP-C [see Fig. 8(b)]. EDCPNet-P refers to the
usage of the EDCP-P module, EDCPNet-C indicates the usage
of the EDCP-C module, and EDCPNet denotes the usage of
the EDCP module.

From Table III and Figs. 9 and 10, the introduction of
the two modules, i.e., SCP and CCP, can further improve
the quality of the UAV-based car and road extraction results.
Both Baseline + SCP and Baseline + CCP and their combina-
tions EDCPNet-P, EDCPNet-C, and EDCPNet present better
extraction results than the Baseline. The involvement of the
SCP module leads to improvement in MIoU, MPA, IoU of
road, IoU of car, F1 of road, and F1 of the car by 5.18%,
3.23%, 11.41%, 3.11%, 7.76%, and 2.35%, respectively. The
involvement of the CCP module leads to improvement in
MIoU, MPA, IoU of road, IoU of car, F1 of road, and F1 of
the car by 7.09%, 3.85%, 15.99%, 3.54%, 10.6%, and 2.61%,
respectively. The CCP module has a greater impact on the
improvement in extraction accuracy. From Fig. 10, EDCPNet-
P achieves the best recall value in both road and car extraction.
Moreover, we notice that the combination and order of these
two modules directly affect the overall performance of the
network, given their different functionalities. Based on the
experimental results, we notice that the EDCP module with
spatial priority order in series outperforms the EDCP-P module
with parallel order in series and the EDCP-C module with
channel priority order in series. On the UAVid dataset, our
EDCPNet using the EDCP module improves 7.86% and 4.88%
on MIOU and MPA, respectively, and 16.79% and 11.08% on
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TABLE III

ABLATION EXPERIMENTAL RESULTS ON UAVID DATASET

Fig. 13. Semantic segmentation results and the heat maps on the UAVid dataset with Baseline and the proposed EDCPNet.

IOU and F1 of road, compared to the Baseline. The above
results indicate that the usage of the EDCP module achieves
the best performance and can effectively improve the accuracy
of car and road extraction in our proposed EDCPNet.

Fig. 11 shows the selected results of car and road extraction
on the UAVid dataset. From Fig. 11(a) and (b), it can be
seen that the introduction of the EDCP module benefits the
acquisition of contextual features, which leads to a wider per-
ceptual field and richer semantic information. The involvement
of EDCP leads to better distinguishment between road surfaces
and parking lots and accurate identification of cars under tilted
views. From Fig. 11(c) and (d), we can see that the Baseline +
EDCP significantly reduces the misclassification and omission
of road and car, presumably due to the fact that the EDCP
module can emphasize target features and suppress the weight
of irrelevant pixels. Given the contribution of EDCP, we notice
that the extraction accuracy of road objects is significantly
improved after the introduction of the EDCP module (see
Table III). The above results again demonstrate the importance
of the proposed EDCP module in improving the accuracy of
car and road extraction.

We present the relationships between the accuracy and
model complexity of the proposed model and its variations in
Fig. 12. The EDCPNet-C (2.33M parameters) and EDCPNet

(2.37M parameters) arranged in series have fewer parameters
compared to the EDCPNet-P (2.45M parameters) arranged in
parallel. Among them, EDCPNet achieves the best extraction
accuracy with an MIoU of 86.97%. Thus, we can conclude
that the proposed EDCPNet achieves the best balance between
extraction accuracy and network complexity.

In order to better highlight the effectiveness of EDCPNet,
we added a comparison of the experimental results of
EDCPNet and the Baseline on the UAVid dataset. The heat
map drawn by the Grad-CAM [47] method is used to analyze
the attention area of the network for different targets, and the
visualization results are shown in Fig. 13.

Fig. 13 shows that EDCPNet extracts more accurate car
and road results with less false detection rate and less missed
detection rate. It can be clearly seen by the Grad-CAM
method that EDCPNet can acquire rich contextual features,
pay more attention to the car and road surroundings, and
get a wider range of perceptual fields and richer semantic
information. This results in a significant reduction in the cases
of roads and cars being misclassified and missed. In the
color value of the heat map, the redder color represents
the higher attention of the network. EDCPNet perceives the
salient features of the target well, pays more attention to
the parts belonging to car and road features, and is more
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accurate, which helps to improve the accuracy of car and road
extraction.

In summary, it can be clearly demonstrated that EDCPNet
can acquire rich contextual features and perceive local salient
features of the target, thus obtaining better classification results
in complex scenes.

V. CONCLUSION

In this study, we propose a lightweight, EDCPNet for car
and road extraction from UAV remote sensing images, which
greatly benefits large-scale traffic monitoring. The proposed
EDCPNet can effectively acquire the global and contextual
information of extracted targets, perceive the salient features
of targets in images, and suppress the importance of irrelevant
elements, such as trees and shadows for contextual parsing,
thus leading to improved performance and adaptability that
facilitate the practical applications of large-scale urban traffic
monitoring in complex urban scenes. We conduct experiments
on two datasets, i.e., UAVid and UDD, and validate the effec-
tiveness of proposed modules via extensive ablation studies.
The experimental results show that the proposed network
achieves great performance in car and road extraction from
UAV remote sensing images with a balanced computational
cost. Compared with other competing methods, i.e., U-Net,
PSPNet, Deelabv3+, SegNet, ESNet, and ERFNet, the pro-
posed EDCPNet model presents notable superiority, evidenced
by its capability in addressing large changes in target scales,
complex foregrounds and backgrounds, and severe shadow
occlusions.
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