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• Analyzed the carbon cycle-drought-land
cover change feedback mechanism in
global climate change background.

• Global is experiencing an increasing trend
of vegetation greenness and productivity.

• Effects of land cover change on global veg-
etation greenness and productivity are re-
gional.

• The frequency, severity, duration, and
scope of global droughts have been in-
creasing.
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Drought–land cover change (D-LCC) is considered to be an important stress factor that affects vegetation greenness and
productivity (VG&P) in global terrestrial ecosystems. Understanding the effects of D-LCC on VG&P benefits the devel-
opment of terrestrial ecosystemmodels and the prediction of ecosystem evolution. However, till today, themechanism
remains underexploited. In this study, based on the Theil-Senmedian estimator andMann-Kendall test, Hurst exponent
evaluation and rescaled range analysis (R/S), Pearson and Partial correlation coefficient analyses, we explore the spa-
tiotemporal distribution characteristics and future trends of Leaf area index (LAI), Net primary productivity (NPP),
Solar-induced chlorophyll fluorescence (SIF), Standardized precipitation evapotranspiration index (SPEI), Soil mois-
ture (SM), Land cover type (LC), and the impact mechanism of D-LCC on global VG&P. Our results provide four
major insights. First, three independent satellite observations consistently indicate that the world is experiencing an
increasing trend of VG&P: LAI (17.69%), NPP (20.32%) and SIF (16.46%). Nonetheless, productivity-reducing trends
are unfolding in some tropical regions, notably the Amazon rainforest and the Congo basin. Second, from 2001 to
2020, the frequency, severity, duration, and scope of global droughts have been increasing. Third, the impact of
land cover change on global VG&P is region-dependent. Finally, our results indicate that the continuous growth of
VG&P in the global vegetation area is likely to become more difficult to maintain.
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1. Introduction

Since the 21st century, environmental changes caused by drought-land
cover changes (D-LCC) pose enormous challenges to global terrestrial veg-
etation greenness and productivity (VG&P) (Radwan et al., 2021;
Vicente-Serrano et al., 2013). The most significant productivity in terres-
trial ecosystems is vegetation, which takes CO2 from the atmosphere
through photosynthesis and fixes it in soil and plants as biomass (Fatichi
et al., 2019). Drought is one of the most prevalent stressors that affect veg-
etation ecosystem functions and carbon balance (Choat et al., 2018;
Schwalm et al., 2017). Drought with a long duration can lead to long-
term water deficit in vegetation (Jiang et al., 2022), weakened respiration
and photosynthesis, increased mortality, and reduced VG&P (Choat et al.,
2012). Many pieces of evidence have pointed to a global increase in the
occurrence, intensity, and length of droughts (Chiang et al., 2021;
Pokhrel et al., 2021; Schwalm et al., 2017). Severe drought will cause
vegetation to brown and reduces the productivity capacity of terrestrial
ecosystems (Gampe et al., 2021; Piao et al., 2020a), potentially directly
transforming productivity into carbon sources (Doughty et al., 2015;
Piao et al., 2019). Furthermore, global LCC is both the cause and
consequence of global environmental change (Song et al., 2018), posing
imminent challenges to the sustainability of terrestrial ecosystems and the
global carbon cycle, especially at regional scales (Fang et al., 2021).

Investigating the changes of global VG&P with D-LCC benefits our
understanding of the Earth as a gigantic system, sheds light on the feedback
mode of the carbon cycle-drought-land cover change, and improves the
carrying capacity of the global terrestrial ecosystem (Jiang et al., 2021;
Schimel and Schneider, 2019). Despite that the impact of D-LCC on the
VG&P of global terrestrial ecosystems has been widely studied, the
response mechanism remains underexploited, mainly due to insufficient
observational data (i.e., low density of meteorological stations) (Das
et al., 2022). The limitations in the ground-based observation information
make consistent global drought analysis challenging (Piao et al., 2020b).
Scholars have attached increasing attention to the impact quantification
of LCC on the global carbon cycle. Till now, however, a comprehensive
understanding of the temporal and spatial trends in land cover types, in-
cluding themagnitude, location, timing, and trends (decreases or increases)
of LCC, is still lacking (Radwan et al., 2021). Such a knowledge gap brings
difficulties to quantifying global LCCs across scales (Song et al., 2018),
preventing us from obtaining the full picture of LCC interactions on VG&P.

Multi-sensor remote sensing observational technology enables themon-
itoring of drought-related variables from a climatological perspective
(e.g., standardized precipitation evapotranspiration index; SPEI) (Li et al.,
2021a), benefiting the assessment and quantification of drought impacts
from an ecological perspective (e.g., soil moisture, SM) (Aghakouchak
et al., 2015; Jiao et al., 2021). In addition, satellite-based monitoring is
periodic, thus providing regular and synoptic views of the Earth's surface
(Cai et al., 2021). This advantage allows us to gain a comprehensive under-
standing of global LCC and determine the impact of LCC on global VG&P
(Schimel and Schneider, 2019). The changing global ecosystem diversity
and complex carbon cycling mechanisms can be better understood via the
top-down remote sensing biomass estimates (Stocker et al., 2019), through
leaf area index (LAI), net primary productivity (NPP), solar-induced chloro-
phyllfluorescence (SIF), and other vegetation indices (Forzieri et al., 2018).

In this study, we present a global assessment of the synergistic D-LCC
interactions on VG&P (0.05° spatial resolution) using six independent
datasets, i.e., LAI, NPP, SIF, SPEI, SM, and LC. We hypothesize that both
SPEI and SM increased contribute to the increase in vegetation greenness
and productivity. If SPEI dominates global vegetation greenness and pro-
ductivity, increased SPEI is expected to lead to more increase vegetation
greenness and productivity, regardless of the effect of SM. If SM dominates
global vegetation greenness and productivity, the increase in SM is
expected to increase vegetation greenness and productivity, regardless of
SPEI. Themajor contributions of this work include (1) analyzing the spatio-
temporal distribution characteristics and change rules of LAI, NPP, SIF,
SPEI, and SM at the global scale from 2001 to 2020; (2) documenting
2

records of dynamic changes of eight land cover types at global and national
scales from 2001 to 2020; (3) assessing the impact of D-LCC interactions on
VG&P; (4) estimating future changes in global drought, vegetation green-
ness, and productivity.

2. Materials and methods

2.1. Datasets

We assess the synergistic D-LCC interactions on VG&P at the global
scale using six different datasets. These datasets were uniformly resampled
to a 0.05-degree latitude-longitude regular grid using bilinear interpola-
tion, with temporal scale uniformed to years.

2.1.1. Leaf area index (LAI)
The leaf area index (LAI), one of the most striking features of the vege-

tation canopy (Dela Torre et al., 2021), denotes half of the total area of plant
leaves per unit of land area (Liang et al., 2021). As an important indicator of
vegetation growth and greenness in terrestrial ecosystems (Zhu et al.,
2016), LAI plays an important role in the carbon cycle, climate model,
terrestrial ecosystem simulation, and vegetation change monitoring (Fang
et al., 2019). LAI data from the Global Land Surface Satellite (GLASS) prod-
uct (http://glass.umd.edu/LAI/MODIS/0.05D/), with a spatial resolution
of 0.05-degree and temporal resolution of 8 days (from 2000 to 2020),
have been proven to be of higher quality compared to other LAI products
and precision (Liang et al., 2021; Xiao et al., 2017).

2.1.2. Net primary productivity (NPP)
Net primary productivity (NPP) is defined as the amount of atmospheric

carbon fixed in living plants per unit time per unit surface area (Gui et al.,
2021; Zhao and Running, 2010; Zhuang et al., 2022a). As an important
parameter of terrestrial productivity and net carbon storage, NPP is an
important indicator for the global carbon cycle and for evaluating the
sustainable development of terrestrial ecosystems (Xiao et al., 2019). The
NPP product from GLASS was derived using an efficiency model (EC-
LUE), considering long-term climate change (Zheng et al., 2020) (http://
glass.umd.edu/NPP/MODIS/500m/). GLASS NPP products span from
2000 to 2020 with a spatial resolution of 500 m and temporal resolution
of 8 days (annual products are also available).

2.1.3. Solar-induced chlorophyll fluorescence (SIF)
Solar-induced chlorophyll fluorescence (SIF) is an effective optical

signal to quantify vegetation photosynthesis on varying spatial scales
(Malenovský et al., 2021; Zhang et al., 2020), with significant spatiotempo-
ral consistency between vegetation greenness and terrestrial ecosystem
NPP on a global scale (Sun et al., 2017; Zhang et al., 2016). We choose
SIF as a supplementary proxy for LAI and NPP (http://data.globalecology.
unh.edu/data/GOSIF_v2/) (Dang et al., 2022; Li and Xiao, 2019). The SIF
products span from2001 to 2020with a spatial resolution of 0.05° and tem-
poral resolution of 8 days (monthly and annual products are also available).

2.1.4. Standardized precipitation evapotranspiration index (SPEI)
Drought severity is quantified using the multiscalar standardized pre-

cipitation evapotranspiration index (SPEI) (Schwalm et al., 2017). SPEI
also considers the influence of temperature and precipitation conditions
on drought development and has a flexible temporal scale; therefore, it
has been widely used in large-scale and long-term meteorological drought
monitoring (Deng et al., 2021). SPEI on different temporal scales reflects
the drought state of different temporal lengths. Short-term SPEI is suitable
for monitoring drought formation, while long-term SPEI focuses on moni-
toring drought persistence (Zhai et al., 2020). In this study, we used the
SPEI-annual (the SPEI-12 of December) to characterize interannual drought
(Jiao et al., 2021). We reproduced the monthly SPEI global dataset using
the SPEI package in the R software, with a 0.5° spatial resolution from
1901 to 2020 (Beguería et al., 2010; Vicente-Serrano et al., 2010). The
input datasets to derive SPEI are monthly precipitation and potential

http://glass.umd.edu/LAI/MODIS/0.05D/
http://glass.umd.edu/NPP/MODIS/500m/
http://glass.umd.edu/NPP/MODIS/500m/
http://data.globalecology.unh.edu/data/GOSIF_v2/
http://data.globalecology.unh.edu/data/GOSIF_v2/
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evapotranspiration (derived from the website of the Climatic Research Unit
(CRU) TS v4.05 (http://www.cru.uea.ac.uk/data/).

2.1.5. Soil moisture (SM)
Soil moisture (SM) is an important parameter for understanding the

interactions and feedbacks of the atmosphere and the Earth's surface
through the energy and water cycles and plays a key role in drought moni-
toring and prediction (Li et al., 2021b). SM variability and trends reduce the
present land VG&P (Aghakouchak et al., 2015; Green et al., 2019). The SM
products used in this study are from global land evaporation Amsterdam
model v3.5a (GLEAM) root-zone soil moisture (SMroot) and surface soil
moisture (SMsurf) (https://www.gleam.eu/). SM products span from
1980 to 2020, with a spatial resolution of 0.25° and temporal resolution
of the day (Martens et al., 2017; Miralles et al., 2011).

2.1.6. Land cover type (LC)
Land cover type (LC) represents spatial information on different types of

physical coverage of the Earth's surface, e.g., forests, grasslands, croplands,
lakes, and wetlands (Li et al., 2022; Song et al., 2018). LC products are
derived from MODIS-derived global land cover type products,
i.e., MCD12C1 (Sulla-Menashe et al., 2019) (https://lpdaac.usgs.gov/
products/mcd12c1v006/). The LC products used in this study are yearly
products spanning from 2000 to 2020, with a spatial resolution of 0.05°.

2.2. Methods

We used the Theil-Sen median estimator and Mann-Kendall test, Hurst
exponent evaluation, rescaled range analysis (R/S), Pearson and Partial
correlation coefficient to explore the spatiotemporal distribution character-
istics of LAI, NPP, SIF, SPEI, SM, LC, and the impactmechanism of D-LCC on
global VG&P. We also made predictions for the near future trends in global
drought and VG&P.

2.2.1. Theil-Sen median estimator and Mann-Kendall test
In this study, the Theil-Sen median estimator trend analysis was coupled

with the Mann-Kendall test to analyze the time series of LAI, NPP, and SIF.
The Theil-Sen median estimator is a stable nonparametric statistical trend
calculation method with high calculation efficiency. It is suitable for trend
analysis of long-term series data and has been successfully applied in
geospatial, meteorological, hydrological, and climate change-related studies
(Feng et al., 2020; Fu et al., 2022; Hamed, 2008; Huang et al., 2019).

(1) Theil-Sen median estimator:

β ¼ Median
x j − xi
j − i

� �
∀ j > i ð1Þ

where i and j are the ordinal time, xi and xj represent the grid unit values at
times i and j (j > i), and β refers to the estimated median slope. When β > 0,
the time series presents an upward trend. On the contrary, when β < 0, the
time series presents a downward trend.

(2) Mann-Kendall trend test:

S ¼
Xn−1

i¼1

Xn
j¼iþ1

sgn x j − xi
� � ð2Þ

sgn x j − xi
� � ¼

þ1 x j − xi > 0
0 x j − xi ¼ 0
−1 x j − xi < 0

8<
: ð3Þ

Z ¼

Sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp S > 0ð Þ

0 S ¼ 0ð Þ
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Sð Þp S < 0ð Þ

8>>>><
>>>>:

ð4Þ
3

Var Sð Þ ¼
n n−1ð Þ 2nþ 5ð Þ −

Xn

m¼1
tm m − 1ð Þ 2mþ 5ð Þ

18
ð5Þ

where xi and xj are the observations corresponding to the i and j of time
series (i < j), sgn() represents the sign function, Z refers to standardized test
statistics, n is the number of the time series (n > 10), and tm refers to the
range of any given tie m. The experimental results pass the bilateral signif-
icance test with a confidence level of 95 % (significance level, α = 0.05),
when ∣Z ∣ ≥ 1.96 (or 2.32) represents the trend of the time series that
passed the 95 % (or 99 %) confidence levels.
2.2.2. Hurst exponent evaluation and rescaled range analysis (R/S)

Hurst exponent reflects the autocorrelation, especially the persistence of
long-term changes in time series data (Markonis and Koutsoyiannis, 2016).
It has been widely used in climatological and ecological research
(Jiang et al., 2017). We use rescaled range analysis (R/S) to establish the
Hurst exponent. The processing workflow contains the following steps:

(1) Dividing the long-term sequence (x1, x2…, xn) into s groups of length r
non-overlapping subsequences (xi1, xi2…, xij, i=1, 2, 3,…, s, j=1, 2,
3, …, r).

(2) Defining the long-term memory of the time series mean xij:

xij ¼ 1
r

Xr

j¼1

xij i ¼ 1; 2; 3;…; s j ¼ 1; 2; 3;…; rð Þ ð6Þ

(3) Calculating the accumulated deviation of zij:

zij ¼
Xj

k¼1

xij − xij
� �

i ¼ 1; 2; 3;…; s j ¼ 1; 2; 3;…; rð Þ ð7Þ

(4) Defining the range sequence of Ri:

Ri ¼ max zij
� �

− min zij
� �

i ¼ 1; 2; 3;…; sð Þ ð8Þ

(5) Defining the standard deviation sequence of Si:

Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
r − 1

Xr

j¼1

xij − xi
� �2

vuut i ¼ 1; 2; 3;…; sð Þ ð9Þ

(6) Calculating the rescaled range of RS:

RS ¼ Ri

Si
i ¼ 1; 2; 3;…; sð Þ ð10Þ

(7) Obtaining the Hurst exponent (H) by fitting the following formula:

log RS ¼ aþ H � log nð Þ ð11Þ

where H is an indicator that measures time series correlation and trend
strength (0 < H ≤ 1), and a is a constant. H = 0.5 indicates that the time
series presents a random pattern; 0.5 < H ≤ 1 indicates the existence of
long-term memory in the time series; 0 < H < 0.5 indicates that the time
series exhibits anti-persistence (the lower the H, the greater the anti-
persistence).
2.2.3. Pearson and partial correlation coefficient

The correlation coefficient expresses the degree of linear association be-
tween the variables under consideration (Zhuang et al., 2022b). We calcu-
late the Pearson correlation coefficient at the pixel scale for each indicator:

R x;yð Þ ¼
∑n
i¼1 Xi − X

� �
Yi − Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1 Xi − X

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
i¼1 Yi − Y

� �2q ð12Þ

where Xi and Yi refers to values of two indicators, X and Y refer to the
mean of X andY, respectively, andR(x,y) refers to the correlation coefficient.
0 < R(x,y) < 1 suggests that X and Y are positively correlated, while −1 <

http://www.cru.uea.ac.uk/data/
https://www.gleam.eu/
https://lpdaac.usgs.gov/products/mcd12c1v006/
https://lpdaac.usgs.gov/products/mcd12c1v006/
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R(x,y) < 0 suggests that X and Y are negatively correlated. The significance
test is performed at p < 0.05.

Further, to better understand the response mechanism of LAI, NPP, SIF
to SPEI and SM, we also calculate the partial correlation coefficient at the
pixel scale for each indicator. The partial correlation coefficient is used to
analyze when SPEI and SM are both related to LAI, NPP, and SIF. The
influence of one indicator is eliminated, with only the correlation between
the other two variables analyzed:

R i; jjhð Þ ¼
Rij − RihRjhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − R2
ih

� �
1 − R2

jh

� �r ð13Þ

where Rij is the correlation coefficient between variables xi and xj, Rih is the
correlation coefficient between variables xi and xh, Rjh is the correlation
coefficient between variables xj and xh, and R(i,j|h) is the partial correlation
coefficient between xi and xj after excluding the influence of the variable xh.

2.2.4. Regression analysis
We quantify the elucidation of vegetation greenness and productivity

response to SM and SPEI on an annual time scale via linear regression anal-
ysis. Before performing the linear regression calculation, we performed
max-min normalization on LAI, SM and SPEI to eliminate the dimensional
influence between different data products. The linear regression follows:

YLAI ¼ a� XSM þ b� XSPEI þ c ð14Þ

where XSM is the normalized SM value,XSPEI is the normalized precipitation
value, YLAI is the normalized LAI value, a is the regression coefficient of
Fig. 1. Global spatiotemporal trends of global leaf area index (LAI), net primary produc
classified into five types, i.e., significant increase (P < 0.01), increase (P < 0.05), stab
trend of the time series passes the 99 % or 95 % confidence levels, respectively. (a) T
and Mann-Kendall test; (b) The spatiotemporal trend distribution of NPP; (c) the spat
decreases and increases in LAI, NPP, and SIF.
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XSM, b is the regression coefficient of XSPEI, and c is the constant of the
regression equation.

3. Results

3.1. Global spatiotemporal trends of LAI, NPP, and SIF

In this study, we perform a long-term spatiotemporal analysis of global
LAI, NPP, and SIF from 2001 to 2020. As a complimentary proxy to LAI and
NPP, SIF has similar spatiotemporal trends to LAI and NPP (Fig. S1). Our
results suggest that global LAI, NPP, and SIF have significant changes in
recent decades (Fig. 1a, b, c), accounting for about 19.67 % (LAI),
24.62 % (NPP), and 18.37 % (SIF) of the land area, respectively (Fig. 1d).
We notice a persistent and widespread improvement of LAI (greening) in
about 17.69 % of the global land area, whereas <2 % of the globe shows
LAI degradation (i.e., browning). Furthermore, since 2001, regions with
increased NPP account for about 20.32 % of the total land area, while
regions with reduced NPP account for 4.29 %. SIF is strongly correlated
with terrestrial photosynthesis (Li et al., 2018), with about 16.46 % of the
land presenting an increasing trend in SIF and about 1.91 % presenting a
decreasing trend in SIF.

From 2001 to 2020, the global vegetation area has shown a significant
increase in greening and productivity (Fig. 1a, b, c; LAI, NPP, and SIF as
proxy), with Russian (LAI, 22.26 %; NPP, 26.93 %; SIF, 19.89 %), Canada
(LAI, 6.68 %; NPP, 11.43 %; SIF,7.11 %), China (LAI, 11.50 %; NPP,
12.86 %; SIF, 12.25 %), America (LAI, 6.91 %; NPP, 7.89 %; SIF, 6.91 %),
Brazil (LAI, 6.12 %; NPP, 2.10 %; SIF, 6.31 %), India (LAI, 5.40 %; NPP,
4.82 %; SIF,4.89 %), Indonesia (LAI, 1.20 %; NPP, 1.23 %; SIF,1.93 %),
and other intensive farming or policy-driven afforestation countries
particularly evident (Fig. 1a, b, c). The above statistics denote the
tivity (NPP), and solar-induced chlorophyll fluorescence (SIF). The overall trend is
le or non-vegetated, decrease (P < 0.05), and significant decrease (P < 0.01). The
he spatiotemporal trend distribution of LAI using the Theil-Sen median estimator
iotemporal trend distribution of SIF; (d) Distribution of the relative percentage of
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contribution ratio of global vegetation greening and productivity growth at
the national scale. Note that we omit some countries with small land areas.
The contribution of all countries to global vegetation greening and produc-
tivity growth can be found in Table S1. In Russia, significant vegetation
greening and 26.93 % productivity growth occurred in 28.89 % of
Russia's land (mainly in the east). In China, 45.35 % of its land experienced
significant vegetation greening and 58.28 % productivity growth (mainly
in China's northern and southern regions); In the United States, 23.82 %
of its land experienced significant vegetation greening and 31.26%produc-
tivity growth (mainly in the western region). In India, 75.18 % of its land
experienced significant vegetation greening and 77.21 % productivity
growth (covering the entire of India (Fig. 1a, b, c). However, we also
observe a decreasing trend of NPP in Congo (Kinshasa) (66.36 %), Peru
(41.90 %), Colombia (40.18 %), Brazil (29.33 %), and Kazakhstan
(16.16 %), among others. The potential drivers could be forest degradation
due to environmental change (e.g., drought, wildfire, insect infestation,
etc.) (Doughty et al., 2015; Stocker et al., 2019), and human activities
(e.g., forestry management, expansion of the agricultural frontier,
commodity-driven deforestation, etc.) (Al-Hanbali et al., 2022; Gatti
et al., 2021).

3.2. Spatiotemporal trends of SPEI, SM, and LC

From 2001 to 2020, areas with increased SPEI accounted for 7.38 % of
the global land, while areas with decreased SPEI accounted for 11.49 %
(Fig. 2d), coinciding with the patterns revealed via simulated data
(Fig. 2c). It is necessary to consider the limitation of SM in analyzing the
spatiotemporal changes of VG&P, especially in drought-related assessments
(Stocker et al., 2018), as SM presents a strong influence on plant physiol-
ogy. We notice that SPEI and SM have strong consistency in spatiotemporal
Fig. 2.Global spatiotemporal trends of root-zone soil moisture (SMroot), surface soil mo
overall trend is classified into five types, i.e., significant increase (P < 0.01), increase (P <
0.01). The trend of the time series passes the 99 % or 95 % confidence levels, respective
Mann-Kendall; (b) The spatiotemporal trend distribution of SMsurf; (c) The spatiotemp
creases and increases in SMroot, SMsurf, and SPEI.
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distribution characteristics (Fig. 2). In the past two decades, areas where
SM increased (9.06 %) were slightly larger than areas where SM decreased
(7.50%) (Fig. 2d).We observe a notable increasing trend of SPEI and SM in
the northern hemisphere, mainly in the northeastern region of China, the
southern part of the United States, northern India and some African
countries, while the decreasing trends in the eastern part of Russia, the
central region of Brazil, and Canada the eastern region of Germany,
Ukraine, and some countries in central and southern Africa (Fig. 2a, b).
The above patterns are considerably consistent with the spatiotemporal
distributions of LAI, NPP, and SIF (see Fig. S2 in Supplementary material).

In this study, we reveal the spatiotemporal trends of LCC at global and
national scales from 2001 to 2020 (Fig. 3). From 2001 to 2020, the world-
wide LCC rate reached 4.29 %, induced by natural or anthropogenic
drivers. LCC varies at the national scale: Russia (20.86 %), Canada
(13.71 %), China (8.12 %), America (7.04 %), Brazil (4.71 %), and India
(2.74 %) contributed a higher proportion of the global LCC (Fig. 3a,b,c;
Table S2). To clearly assess the impact of LCC on VG&P, we perform attri-
bute extraction and reclassification according to MCD12Q1 International
Geosphere-Biosphere Programmer (IGBP) classification descriptions
(Sulla-Menashe et al., 2019) and generate global land cover data with
eight major categories (Table S3), which are used to analyze the effects of
urbanization, deforestation, agricultural land expansion, conversion of
farmland to forest, afforestation, and intensive farming on VG&P (Curtis
et al., 2018). Forests around the world are in a state of constant change.
Studies have shown that, compared with 2001, forest coverage has lost
about 2.43 %, and the area of shrublands and savannas increased by
1.16 % in 2020. Due to effective development and utilization and
functional improvement, the global bare land area decreased by 2.78 %
during the investigated period (Fig. 3d). We observe urban expansion as
the end of the LCC (Shao et al., 2021), presumably due to the direct
isture (SMsurf), and standardized precipitation evapotranspiration index (SPEI). The
0.05), stable or insufficient data, decrease (P < 0.05), and significant decrease (P <
ly. (a) The spatiotemporal trend distribution of SMroot using Theil-Sen median and
oral trend distribution of SPEI; (d) The distribution of the relative percentage of de-



Fig. 3.Global spatiotemporal trends of global land cover changes (LCC), consisting of water bodies, forests, shrublands and savannas, permanent wetlands, croplands, urban
and built-up lands, snow and ice, and barren areas. (a) Global distributionmap of eight major land cover types in 2001; (b) Global distributionmap of eight major land cover
types in 2020; (c) Changes in land cover types at the national scale from 2001 to 2020, where LCC represents the land cover type change rate, and the size of the circle
represents the number of land type change pixels at the national scale; (d) Dynamics of the pixel-wise changes amount in global land type from 2001 to 2020.

Fig. 4.Global land cover type transitions from 2001 to 2020. (a) Global land cover type transfer diagram; (b) The number of global gross gains, gross losses, and net changes
pixels for different land cover types from 2001 to 2020 (error bars represent 10 % error values).
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transformation of forests, shrublands and savannas or barren areas, also
possibly due to the indirect transformation of these land cover types
through croplands (Radwan et al., 2021). Through the temporal trends of
the eight global land cover types (Fig. 3d), we notice that the area of
urban and built-up lands increased by 13.42 %, mainly due to the transfor-
mation of shrublands and savannas (50.37 %) and croplands (42.46 %)
(Fig. 4a). The shrublands and savannas showed an obvious increasing
trend (34.25 %), while the forests (22.50 %) and barren areas (22.81 %)
showed a significant decreasing trend. The changes in these three land
cover types accounted for 80.96 % of the total change area of the global
LCC (Fig. 4a). The area of global forest, permanent wetlands, snow and ice,
and barren areas showed a decreasing trend, and the ratios of net change
and gross loss reached 22.22%, 34.20%, 37.77%, and 53.63%, respectively.
The area of global water bodies, shrublands and savannas, croplands,
and urban and built-up lands showed an increasing trend, and the ratios of
net change and gross gain reached 20.19 %, 19.44 %, 17.81 %, and
83.73%, respectively (Fig. 4b). These results suggest that urbanization, defor-
estation, agricultural land expansion, conversion of farmland to forests, affor-
estation, and intensive farming are constantly changing the global LCC
patterns, which in turn affects the VG&P of terrestrial ecosystems.

3.3. Quantifying of VG&P response to SM and SPEI

We quantify the elucidation of VG&P response to SM and SPEI on an
annual time scale via linear regression analysis. The experimental results
Fig. 5. Linear regression analysis with soil moisture (SM) and solar-induced chlorop
dependent variable. (a) Spatial distribution of regression coefficients of SM; (b) The
standard deviation). (c) Spatial distribution of regression coefficients of SM; (d) Th
standard deviation).
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show that LAI, NPP, and SIF present highly consistent responsemechanisms
to SPEI and SM. SM, SPEI, and VG&P show a high linear correlation
(Fig. 5a, c). Both climate drought (SPEI) and soil drought (SM) have differ-
ent degrees of impact on VG&P, while the weight of soil drought on VG&P
is more prominent than that of climate drought on VG&P (Fig. 5b, d). The
SM regression coefficient shows a relatively stable positive trend between
60°N and 50°S latitude (Fig. 5b), while SPEI regression coefficient shows
relatively strong positive and negative fluctuations between 80°N and
60°S latitude (Fig. 5d). These results further point out that the impact of
soil drought (lower SM) on VG&P is rather direct comparedwith the impact
of meteorological drought on VG&P.

3.4. Estimating future changes in global drought and VG&P

In this study, we use Hurst exponent evaluation and rescaled range
analysis, combined with Theil-Sen median estimator and Mann-Kendall
test, to perform pixel-wise persistence predictions for six indicators,
i.e., LAI, NPP, SIF, SMroot, SMsurf, and SPEI (Figs. 6, 7). We observe that
LAI, NPP, and SIF are consistent in terms of indicating the future develop-
ment and change of VG&P (Fig. 6a, b, c). Specifically, about two-fifths of
the previously stable vegetation areas are expected to change in the future
(SC), and about one-fifth of previously stable vegetated areas are expected
to continue their stable trend (SS); A small percentage (about 3 %) of areas
are expected to experience reduced VG&P, mainly in the Amazon rainforest
and Congo basin; The VG&P of a very small percentage of areas (about 2%)
hyll fluorescence (SIF) as independent variables and leaf area index (LAI) as the
regression coefficient of SM arranges the curve by latitude (red shading is the

e regression coefficient of SM arranges the curve by latitude (red shading is the



Fig. 6. Estimating future changes in global vegetation greenness and productivity (VG&P) based on observed leaf area index (LAI), net primary productivity (NPP), and solar-
induced chlorophyllfluorescence (SIF) indicators from2001 to 2020. the overall trend of future changes is classified into six types: stable in the past and expected to change in
the future (SC), stable in the past and remains stable in the future (SS), decreased in the past and is likely to increase in the future (DI), decreased in the past and remains
decreasing in the future (DD), increased in the past but transitions to decrease in the future (ID), increased in the past and will increase in the future (II). (a) Predicted LAI
spatiotemporal trends; (b) Predicted NPP spatiotemporal trends; (c) Predicted SIF spatiotemporal trends; (d) The proportion of six types of trends in LAI, NPP, and SIF.
For LAI, NPP and SIF, the proportions of the future six types of changes are: LAI (SC: 38.97 %, SS: 23.61 %; DI: 1.28 %, DD: 2.41 %, ID: 16.83 %, II 16.90 %), NPP
(SC: 37.46 %, SS: 20.34 %, DI: 2.51 %, DD: 4.85 %, ID: 21.88 %, II: 12.96 %), and SIF (SC: 41.65 %, SS: 23.71 %, DI: 1.90 %, DD: 1.70 %, ID: 19.70 %, II: 11.34 %).
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is likely to rebound, i.e., VG&P decreased in the past and is expected to
increase in the future. Notably, the vegetation area that presents increased
VG&P will no longer continue to grow and is expected to decrease in the
future. The vegetation area that maintains the continuous increase of
VG&P only accounts for about one-seventh of the global vegetation area.

By estimating future changes in global drought based on observed SM
and SPEI indicators from2001 to 2020, we derive the spatiotemporal distri-
bution characteristics of six types of trends (Fig. 7a, b, c). The results
suggest that in the future, nearly 40 % of the land SM and SPEI will no
longer maintain a relatively stable state; 30 % of the land will continue to
maintain a stable state. These two types of changing trends cover 70 % of
the global land (Fig. 7d).

4. Discussion

Our results point to a significant VG&P growth trend, which is consis-
tent with existing findings (Forzieri et al., 2018; Zhu et al., 2016). Nonethe-
less, the vegetation browning and NPP reduction trends in some tropical
regions deserve our attention. Recent studies have shown that, due to
factors such as climate change, natural disaster events, and deforestation
(Curtis et al., 2018), ecosystem pressures in the Amazon have increased
with carbon accumulation on a long-term downward trend (Achard et al.,
2002; Gatti et al., 2021). Our study provides direct evidence for the long-
term decline of productivity in tropical rainforests, as we observe that
more than three-quarters of the Amazon region showed a significant
8

decline in productivity during the investigated period. In addition, we
also observe that the tropical rainforest in the Congo Basin, the second-
largest tropical rainforest in the world after the Amazon rainforest, is
undergoing drastic changes, as more than three-quarters of the tropical
rainforest in the Congo Basin are showing a significant downward trend
in productivity.

Our results suggest significant SPEI and SM changes in about one-sixth
of global land (Fig. 2a, b, c). We define meteorological drought as
SPEI ≤ −1 and divide SPEI into four different types, i.e., extremely dry
(SPEI ≤ −2), severely dry (−2 < SPEI ≤ −1.5), moderately dry
(−1.5 < SPEI ≤ −1), near normal conditions (−1 < SPEI < +1), and
wet (SPEI ≥ 2). Compared with 2001, the global land area with meteoro-
logical drought increased by 67.92 %, and the proportion of extremely
dry and severely dry increased by 158.08 %. We found that meteorological
drought represented by SPEI is more sensitive to monitoring vegetation
productivity trends (Schwalm et al., 2017), especially for the Amazon
rainforest, Germany, and Ukraine, where notable downward trends of
productivity occurred (Fig. 1b, Fig. 2c). SM is an important factor in global
vegetation primary production and interannual carbon cycle changes
(Stocker et al., 2019), and SM deficiency has a direct impact on vegetation
(Liu et al., 2020). The results of this study show that SM has a strong
correlationwith LAI, NPP, and SIF (Fig. 8). Overall, the global soil moisture
in 2020 decreased by 2.50% comparedwith 2000, which is consistent with
the current study (Dang et al., 2022). Changes in vegetation structure under
drought stress may lead to the reduction of leaf area and leaf abscission,



Fig. 7. Estimating future changes in global drought based on observed root-zone soil moisture (SMroot), surface soil moisture (SMsurf), and standardized precipitation
evapotranspiration index (SPEI) indicators from 2001 to 2020. The overall trend of future changes is classified into six types: SC, SS, DI, DD, ID, and II. (a) Predicted
future trends of SMroot; (b) Predicted future trends of SMsurf; (c) Predicted trends of SPEI; (d) The proportion of six types of trends in SMroot, SMsurf, and SPEI. SMroot
(SC: 40.86 %, SS: 32.88 %; DI: 5.48 %, DD: 6.30 %, ID: 6.25 %, II 8.22 %), SMsurf (SC: 45.97 %, SS: 30.43 %, DI: 5.84 %, DD: 4.96 %, ID: 6.49 %, II: 6.30 %), and SPEI
(SC: 39.59 %, SS: 33.92 %, DI: 7.53 %, DD: 8.60 %, ID: 5.53 %, II: 4.83 %).
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which are usually inferred based on LAI; The impact of drought on
terrestrial productivity is reflected through NPP, while SIF is used to assist
in verifying the impact of drought on VG&P. LAI, NPP, and SIF have highly
consistent response mechanisms to drought (Figs. 8 and S2).

From 2001 to 2020, the global vegetation area has shown notable
increases in greening and productivity (LAI, NPP, and SIF as proxy),
especially evident in areas of intensive farming or policy-driven afforesta-
tion such as Russia, Canada, China, America, Brazil, India, Indonesia, and
Turkey, to list a few (Fig. 1a, b, c). Our study confirms the effectiveness of
China's large-scale afforestation policy, especially in the southern and
northern regions of China. Policy-driven LCCs, such as returning farmland
to forests and afforestation, have greatly improved VG&P capacity, making
the southern and northern regions of China one of the regions with the
densest vegetation greenness and NPP around the world, suggesting that
policy-driven afforestation is a possible solution to boost vegetation cover
and enhance carbon storage (Piao et al., 2020a). At the global and national
scales, LCC improves the global vegetation coverage by increasing the
vegetation area as well as the productivity capacity per unit area of vegeta-
tion through policy-driven afforestation and reasonable intervention in
forest areas, thereby maximizing the increasing vegetation cover and
enhancing carbon storage.

Globally, the gains and losses of forests, shrublands and savannas, crop-
lands, and barren areas are synchronized, with 95% of the global net forest
loss attributed to environmental changes (e.g., drought, wildfires, pests,
etc.) and human activities (e.g., forestry management, deforestation caused
by the expansion of agricultural frontiers, commodity-driven deforestation,
etc.). The drivers of forest loss vary by region, with environmental change
being the main disturbance factor in temperate and boreal forests. In the
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tropics, human activities become the most important factor (Curtis et al.,
2018). We notice that the global cropland areas show a balance of comple-
ments. Despite the land transfer for urban and built-up lands, the transfer of
shrublands and savannas has been compensated accordingly, suggesting
that bare land has been effectively utilized with improved functionality in
the past two decades. The area of land converted from barren areas to
shrublands and savannas is more than three times than that converted
from shrublands and savannas to barren areas (Fig. 4b), indicating that
land desertification can be slowed down through correct and effective
human intervention and, to some extent, the long-term land degradation
caused by climate change can be compensated.

Therefore, we cannot pin our hopes on achieving carbon neutrality
entirely on unrestricted VG&P growth in the global vegetated area, as half
of the areas with significant VG&P growth are expected to show a decreasing
trend in the near future. It is foreseeable that the continuous growth of VG&P
in the global vegetation area will become more and more difficult to main-
tain, presumably due to a variety of reasons that include climate, tempera-
ture, soil conditions, and nutrients (e.g., nitrogen, phosphorus, and
potassium) that limit the growth of vegetation (Wang et al., 2020). The
results suggest that the Amazon rainforest and the Congo Basin will continue
to present a downward trend in NPP (Fig. 6b), which deservesmore attention
in the future. At last, due to the errors and limitations of observations in
remote sensing datasets, there are obvious data fluctuations in high latitudes,
such as north of 60°N and south of 30°S. For the multiple linear regression
analysis, only the scenarios where the effects of SM and SPEI on the vegeta-
tion greenness and productivity are linearly correlated are considered, and
the nonlinear correlation scenarios are not considered sufficiently
(Liu et al., 2020), which should be improved in future research.



Fig. 8. Distribution of partial correlation coefficients between leaf area index (LAI), net primary productivity (NPP), solar-induced chlorophyll fluorescence (SIF), on soil
moisture (SM) after excluding the influence of standardized precipitation evapotranspiration index (SPEI). (a) Distribution of partial correlation coefficients between LAI
and SM after excluding the influence of SPEI, R (LAI, SM|SPEI); (b) Distribution of partial correlation coefficients between NPP and SM after excluding the influence of
SPEI, R (NPP, SM|SPEI); (c) Distribution of partial correlation coefficients between SIF and SM after excluding the influence of SPEI, R (SIF, SM|SPEI); (d); Combination
plots of Box-whisker and violin representing R(LAI, SM|SPEI), R (NPP, SM|SPEI) and R (SIF, SM|SPEI) data distributions, with boxes representing quartiles, circles
representing the median, and whisker representing the range of maximum and minimum values.

J. Chen et al. Science of the Total Environment 852 (2022) 158499
5. Conclusions

In this study, we explored the spatiotemporal distribution character-
istics of LAI, NPP, SIF, SPEI, SM, LC and the impact mechanism of D-LCC
on global VG&P using six global-scale datasets. The results of this study
provide four valuable insights into the synergistic D-LCC interactions on
VG&P. First, three independent satellite observations consistently
indicate that the world is showing an increasing trend of VG&P: LAI
(17.69 %), NPP (20.32 %) and SIF (16.46 %). Nonetheless,
productivity-reducing trends are unfolding in some tropical regions,
notably the Amazon rainforest and the Congo basin. Second, from
2001 to 2020, the frequency, severity, duration, and scope of global
droughts have seen an increasing trend. LAI, NPP, and SIF present
highly consistent response mechanisms to SPEI and SM. The coverage
of shrublands and savannas showed a notable increasing trend
(34.25 %); On the contrary, the forests (22.50 %) and barren areas
(22.81 %) showed a significant decreasing trend. The changes in these
three land cover types accounted for 80.96 % of the total change area
of the global LCC. (3) From 2001 to 2020, Russia, Canada, China,
America, Brazil, India, Indonesia, and Turkey, among others, with
intensive farming or afforestation, presented a significant increase in
VG&P. Policy-driven LCCs, such as reforestation and afforestation,
have made southern and northern China one of the regions with the
densest VG&P in the world. (4) It is foreseeable that the continuous
growth of VG&P in the global vegetation area is likely to become more
difficult to maintain, and the regeneration of natural forests may be an
important strategy to capture additional carbon emissions.
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