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Abstract—In this paper, a new sparse representation-based bi-
nary hypothesis (SRBBH) model for hyperspectral target detec-
tion is proposed. The proposed approach relies on the binary
hypothesis model of an unknown sample induced by sparse repre-
sentation. The sample can be sparsely represented by the training
samples from the background-only dictionary under the null hy-
pothesis and the training samples from the target and background
dictionary under the alternative hypothesis. The sparse vectors
in the model can be recovered by a greedy algorithm, and the
same sparsity levels are employed for both hypotheses. Thus, the
recovery process leads to a competition between the background-
only subspace and the target and background subspace, which
are directly represented by the different hypotheses. The detection
decision can be made by comparing the reconstruction residuals
under the different hypotheses. Extensive experiments were car-
ried out on hyperspectral images, which reveal that the SRBBH
model shows an outstanding detection performance.

Index Terms—Binary hypothesis, hyperspectral imagery, sparse
representation, target detection.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) have great potential
for target detection because they convey abundant

information about the spectral characteristics of materials, with
hundreds and even thousands of bands covering specific wave-
lengths [1]. Target detection aims to separate the specific target
pixels from the various backgrounds by the use of known target
spectra or anomalous properties [2]–[5]. It has attracted signifi-
cant interest in HSI applications such as detecting rare minerals
in geology, oil pollution in environmental research, land
mines in the public safety and defense domain, and man-made
objects in reconnaissance and surveillance applications [5], [6].

Target detection algorithms are typically derived from the
binary hypothesis model, which consists of two competing
hypotheses: the H0 (target absent) and H1 (target present)
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hypotheses. The test pixels in HSI can then be uniformed by
implicitly or explicitly assumed statistical distribution charac-
teristics, such as a Gaussian distribution. The likelihood ratio or
generalized likelihood ratio of the probability density functions
of the target and background can be conveniently used to
construct a detector. Well-known algorithms with different hy-
pothesis models include the following: 1) the spectral matched
filter (SMF) [7], [8], which assumes that both hypotheses follow
a Gaussian distribution and differ only in their means; 2) the
matched subspace detector (MSD) [9], which assumes that both
hypotheses obey a Gaussian distribution with the same scaled
identity covariance matrix and differ only in their means; and
3) the adaptive coherence/cosine detectors (ACEs) [10], [11],
which assume that the background has the same covariance
structure but different variances under the two hypotheses.

In recent years, sparsity-based techniques have been pro-
posed for many HSI processing fields, such as classification
[12]–[14], unmixing [15], face recognition [16], [17], dimen-
sionality reduction [18], and target detection [19]–[22]. The
target detection algorithms applied with a sparsity-based ap-
proach are typically compared with the basic sparsity-based
target detector (STD) proposed in [20]. The basic STD uses
a similar sparsity model to that proposed in [23] to sparsely
represent a test image by a few training samples, including
both target and background samples, and it directly employs
the reconstruction residuals to perform the detection. One of the
advantages of the STD is that there is no explicit assumption on
the statistical distribution characteristics of the observed data,
as in the previous target detection algorithms [20]. Furthermore,
compared to the algorithms with a single target spectrum, such
as the SMF, the STD performs better in representing the target
spectral characteristics as it uses a target subspace generated by
some target training samples from a target dictionary, which can
alleviate the phenomenon of spectral variability caused by the
varying illumination and atmospheric effects [24], [25].

In this paper, a novel binary hypothesis model based on
sparse representation (SRBBH) is proposed for HSI data. In
essence, the SRBBH detector effectively combines the ideas of
a binary hypothesis and sparse representation. This approach
constructs more reasonable dictionaries based on the hypothe-
ses and then sparsely and separately represents the test sample
by different training samples under different hypotheses. The
recovery process aims to find a certain number of atoms from
the background dictionary or target and background dictio-
nary that best represent the test pixel. Therefore, based on
the same sparsity level constraint for the two hypotheses, the
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recovery process implicitly leads to a competition between
the two hypotheses corresponding to the pixel class label.
The experimental results in this paper, which are based on
several different hyperspectral data sets, demonstrate that the
SRBBH detector can dramatically increase the detection per-
formance when compared to the traditional STD, and it also
outperforms the other traditional detectors.

The rest of this paper is organized as follows. Section II
briefly describes a number of the previously proposed ap-
proaches that are commonly used in HSI target detection.
The SRBBH-driven target detection algorithm is presented
in Section III. The effectiveness of the proposed model and
the detection algorithm is demonstrated by extensive experi-
ments presented in Section IV. Finally, conclusions are drawn
in Section V.

II. PREVIOUS ALGORITHMS

A. MSD

In the MSD, the test pixel is modeled in terms of the target
subspace and background subspace which are obtained using
the target and background training samples, respectively. The
competing hypotheses for the MSD are [20]

H0 : x =Bb+w, target absent

H1 : x =St+Bb+w, target present (1)

where B and S are matrices whose columns are linearly
independent and span the background and target subspaces,
respectively. In the MSD, the spectral variability of the target
and background are taken into account and modeled with the
subspace models. b and t are the corresponding abundances of
B and S. w is the additive Gaussian noise, w ∼ N(0, σ2

wI),
and σ2

w is the variance of the noise. Using the generalized
likelihood ratio test (GLRT), the output of the MSD for an input
x is given by [9], [20]

DMSD(x) =
xTP⊥

Bx

xTP⊥
SBx

(2)

where P⊥
B = I−PB and PB = B(BTB)−1BT is the projec-

tion matrix onto the column space of the matrix B. The matrix
SB = [SB] denotes the matrix obtained by combining the tar-
get and background subspaces. The eigenvectors corresponding
to the larger eigenvalues of the covariance matrix are usually
used to generate the subspace.

B. Sparsity-Based Target Detection

A test sample x is modeled to lie in the union of the back-
ground and target subspaces, respectively spanned by the back-
ground training samples {abi}i=1,2,...Nb

and the target training
samples {ati}i=1,2,...Nt

. Therefore, x can be represented by a
sparse linear combination of all the training samples [20]

x ≈
(
αb
1a

b
1 + αb

2a
b
2 + · · ·+ αb

Nb
abNb

)

+
(
αt
1a

t
1 + αt

2a
t
2 + · · ·+ αt

Nt
atNt

)

= [ab1 ab2 · · · abNb
] [αb

1 αb
2 · · · αb

Nb
]T

+ [at1 at2 · · · atNt
] [αt

1 αt
2 · · · αt

Nt
]T

=Abαb +Atαt = Aα (3)

where Nb and Nt are the number of the background and target
training samples, respectively. Ab and At are the B ×Nb back-
ground dictionary and B ×Nt target dictionary whose columns
are the background and target training samples, respectively.
A is the union dictionary consisting of both the background
and target training samples. α is a concatenation of αb and αt,
which are sparse vectors with only a few nonzero entries.

The sparse vector α can be recovered by solving

α� = argmin‖Aα− x‖2 subject to ‖α‖0 ≤ K0 (4)

where ‖ · ‖0 denotes the �0-norm, which is defined as the num-
ber of nonzero entries in the vector (also called the sparsity level
of the vector) [20]. K0 is a given upper bound on the sparsity
level [26]. In this paper, the aforementioned problem is solved
by the orthogonal matching pursuit (OMP) [27] algorithm.

Partially reconstructed pixels, using only the background or
target dictionary, can be obtained by decomposing the sparse
vector α� into α�b and α�t, which are the vectors respectively
corresponding to the background and target training samples.
The recovery process implicitly leads to a competition between
the background and target subspaces. The residuals of recovery
by the background and target subspaces are [20]

rb(x) = ‖x−Abα�b‖
rt(x) = ‖x−Atα�t‖. (5)

The class label of the test pixel can be determined by these
residuals, and the output of the detector is calculated by [20]

DSTD(x) = rb(x)− rt(x). (6)

III. SRBBH MODEL FOR TARGET DETECTION

A. SRBBH Model

Some sparse representation classifiers employ the sparsity
within a class for the classification; for example, the classical
sparse representation based classification [23] relies on the
underlying assumption that a test sample can be linearly rep-
resented by a small number of training samples from the same
class. Furthermore, the authors in [20] showed that a few back-
ground samples are adequate to reconstruct a test background
sample in HSI. Thus, for a background pixel x, its spectrum
can be approximately represented as a linear combination of
the training samples {abi}i=1,2,...Nb

as follows:

x ≈ γ1a
b
1 + γ2a

b
2 + · · ·+ γNb

abNb

= [ab1 ab2 · · · abNb
] [ γ1 γ2 · · · γNb

]T

=Abγ (7)

where γ is a sparse vector whose entries are the abundances of
the corresponding training samples in the background dictio-
nary Ab.

Similarly, if x is a target pixel, particularly a subpixel target,
its spectrum approximately lies in a low-dimensional subspace
spanned by the union of the background training samples
{abi}i=1,2,...Nb

and the target training samples {ati}i=1,2,...Nt
.
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The pixel x can be approximately represented as a linear
combination of all the training samples as follows:

x ≈ (βb
1a

b
1 + βb

2a
b
2 + · · ·+ βb

Nb
abNb

)

+
(
βt
1a

t
1 + βt

2a
t
2 + · · ·+ βt

Nt
atNt

)

= [ab1 ab2 · · · abNb
] [βb

1 βb
2 · · · βb

Nb
]T

+ [at1 at2 · · · atNt
] [βt

1 βt
2 · · · βt

Nt
]T

=Abβb +Atβt = Aβ (8)

where A =
[
A b At

]
is the B × (Nb +Nt) union dictionary

consisting of both the background dictionary Ab and the target
dictionary At. βb and βt are the unknown vectors whose
entries are the abundances of the corresponding background
and target training samples, respectively. β is a concatenation
of βb and βt and is a sparse vector.

In the proposed detection algorithm, an unknown test sample
is modeled to lie in the background subspace or the target and
background subspace. Therefore, a test sample x can be chosen
from the competing hypotheses

H0 : x =Abγ + e0, target absent

H1 : x =Abβb +Atβt + e1=Aβ + e1, target present (9)

where e0 and e1 are the approximation residuals, and the same
sparsity constraint is employed for both hypotheses, which
makes the two residuals more comparable. The constraint is
further discussed in the following part and clearly examined in
the experiment section.

This model is similar to the MSD [9]. However, in the
case of the MSD, the target and background are assumed to
have a Gaussian distribution, the unknown parameters can be
estimated by the maximum likelihood estimation method, and
GLRT is used to develop the detector. In the proposed SRBBH
model, no assumption about the target and background distribu-
tions is required, and a greedy algorithm is used to estimate the
unknown sparse vectors. The approximate residuals can then be
easily obtained by a subtract operation and are directly used to
develop the detector.

In addition, in the MSD signal model, the columns of the
background and target dictionaries have to be independent in
order to generate the required projection operators, and the
eigenvectors corresponding to the significant eigenvalues of the
target and background covariance matrices are usually used to
generate the columns of the background and target dictionaries.
In the proposed approach, the subspace model is more gener-
alized since independence between the training samples is not
necessary.

The proposed SRBBH model is more complete and realistic
than the basic sparsity model in STD [20]. The basic sparsity
model in STD can be regarded as a special case of the SRBBH
model. In the case of the basic sparsity model, either the target
test samples or the background test samples are represented by
both the background and target training samples. In the pro-
posed SRBBH model, the test samples are modeled separately
with more reasonable dictionaries, only the background training
samples for the null hypothesis, and the combined target and
background training samples for the alternative hypothesis.

The basic sparsity model in STD does not fully incorporate
the class label (prior) information of the data set; it only
utilizes the class label (background and target) information in
postprocessing when calculating the residuals for each class
and ignores it when calculating the sparse vectors. In the
detection problems, we are given a set of training samples with
corresponding labels, although the available number of training
samples will be very limited, particularly the target training
samples. The proposed SRBBH model makes the assumption
that a test sample should be represented by the atoms from the
same classes that the test sample belongs to, which means that
the test sample is modeled separately, with the training samples
from different classes for the different hypotheses.

Furthermore, in the basic sparsity model in STD, the re-
covery process implicitly leads to a competition between the
background and target subspaces, respectively spanned by
the background and target training samples. In the proposed
SRBBH model, the recovery process implicitly leads to a
competition between the null hypothesis represented by the
background subspace and the alternative hypothesis represented
by the background and target subspace.

Moreover, as for the computational complexity, since
SRBBH-based target detector (SRBBH-TD) solves two STD-
like optimization problems, the time cost of SRBBH-TD is
about twice as that of STD.

B. Reconstruction and Detection

Given the dictionaries Ab and A, the sparse vectors γ and
β can be obtained by solving the problem in (4), which, in this
paper, is achieved with the OMP [27] algorithm.

The sparse vectors γ� and β
�

are therefore recovered to
find the few atoms that best represent the test pixel under
the different hypotheses. In addition, the test sample can be
reconstructed by x�0 = Abγ� and x�1 = Aβ

�
, where γ� and β

�

are the recovered sparse vectors corresponding to Ab and A.
The recovery process implicitly leads to a competition between
the two hypotheses. The recovered sparse representation is
therefore naturally discriminative. The reconstructed spectrum
can be determined by comparing the reconstruction error of the
mean squared error under the two hypotheses. The residuals of
recovery by the two hypotheses are

r0(x) = ‖x−Abγ�‖ (10)

r1(x) = ‖x−Aβ
�‖.

The class label of the test pixel can be determined by these
residuals. In addition, the output of the SRBBH-TD is calcu-
lated by

DSRBBH−TD(x) = r0(x)− r1(x). (11)

OMP is a greedy algorithm which terminates when the
following occurs: 1) A prescribed sparsity level is reached, or
2) the residual becomes sufficiently small. In our proposed
problem setting, the second stopping criterion should be re-
moved because the detection is completely based on the
approximate residual. The sparsity level which controls the
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approximation accuracy therefore becomes a critical parameter.
The sparsity level refers to the number of nonzero entries in the
sparse vector, which is also the number of atoms selected from
the dictionary by OMP to approximate the test pixel.

Whether the same values of the sparsity level parameters
should be used in both hypotheses during the recovery process
is an interesting problem. If the values are set differently in
both hypotheses, and especially if the value of the sparsity
level parameter in H1 is higher than that in the null hypothesis,
from a reconstruction point of view, the target and background
subspace will therefore have a higher dimension with a richer
basis and, consequently, it is likely to represent the test pixel
(background or target) more accurately. Thus, it is highly likely
that the H1 residual should be smaller than the H0 residual,
and it may lead to a significantly biased misclassification and
a weakened competition between both hypotheses. Contrary,
if the value of the sparsity level parameter in H1 is smaller
than that in the null hypothesis, for a background test pixel,
the H0 residual is highly likely to be smaller than the H1

residual, and it is likely to lead to a correct classification; for
a target test pixel, the relationship between two residuals in
H0 and H1 may be not certain. In brief, different values of
the sparsity level parameters are likely to lead to a significantly
weakened competition between both hypotheses and a severely
biased misclassification; hence, the same values of the sparsity
level parameters should be used in both hypotheses, which can
also greatly help to reduce the complexity of the parameter
adjustment. As we know, the recovery process aims to find a
certain number of atoms from Ab or A that best represent the
test pixel. Therefore, when the same values of the sparsity level
parameters are set for both hypotheses, for a background test
pixel, the reconstruction residuals of the two hypotheses tend
to be the same. For a target pixel, the reconstruction residual
via target and background samples in A tends to be smaller
than that through the same number of only background samples
in Ab. Therefore, based on the same sparsity level constraint,
the recovery process implicitly leads to a better competition
between the two hypotheses, which will be further examined
in the experiment section.

C. Background and Union Dictionary Construction

The construction of dictionaries Ab and A requires careful
attention. A universal dictionary constructed via the training
samples in the whole image scene can guarantee the sparsity in
the coefficient vector. However, in return, it makes the solution
of the coefficient vector unstable, and there will be a lot of
atoms which are uncorrelated to the test sample. Furthermore,
in target detection applications, there is usually a large time
consumption for recovering the sparse vector by a large univer-
sal dictionary. In this paper, an adaptive local dictionary method
[20] is employed to construct the background dictionary in
order to better represent and capture the spectral signature of the
test sample. The number of the target pixels is small. The target
dictionary is therefore constructed from some of the target
pixels in the global image scene. Specifically, the background
dictionary is generated locally for each test pixel through a dual
concentric window which separates the local area around each

Fig. 1. Dual concentric window and its window sizes.

pixel into two regions, a small inner window region (IWR)
centered within a larger outer window region (OWR) [28], as
shown in Fig. 1. The IWR is used to enclose the target of
interest to be detected, while the OWR is employed to model
the local background around the target region. Since there is
no specific method to choose the size of the detection window
[29], the window sizes are set manually and experientially. Only
pixels in the outer region form the atoms in Ab. In this way,
the subspace spanned by the background dictionary becomes
adaptive to the local statistics. Therefore, if the test sample is
a background pixel, it is likely to find very similar spectral
characteristics in the background dictionary. On the other hand,
if the test sample is a target pixel, particularly a target embedded
as a single pixel, it will be difficult for the pixel to find a good
match in Ab since the OWR does not include any target pixels,
and the test pixel is likely to be better represented by the target
and background dictionary A under the H1 hypothesis.

As with the local detectors, the center window in the dual-
window structure is a guard window which is used to eliminate
the probable targets in the outer window so that the background
dictionary is pure. However, targets in the outer window may
still exist and make the outer window impure since the windows
slide across the whole image. This is a common problem for
all the local detectors. We can expect that if the target pixels
are distributed densely and evenly, the problem may have a
great effect on the detection performance; otherwise, it tends
to be ignored. One way to solve the problem is to exclude
the probable target pixels by the prior target spectrum before
dictionary construction. We can undertake this target exclusion
procedure and then construct the background dictionary from
the outer window.

According to the aforementioned descriptions, the SRBBH
model for hyperspectral target detection is presented in Table I.

IV. HYPERSPECTRAL DATA EXPERIMENTS

A. Hyperspectral Data Sets

Three hyperspectral data sets are used in this paper to eval-
uate the effectiveness of the proposed detectors introduced in
Section III. We use three data sets with different characteristics,
including the data collection instrument, the target size, and the
spatial distribution of the targets.
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TABLE I
PROPOSED SRBBHD-TD ALGORITHM FOR HSI

Fig. 2. PHI image scene of band 10 and the signature of the target material.

The first data set is a synthetic image, which was collected by
the Chinese-made push-broom hyperspectral imager (PHI). It is
a scene of the Xia Qiao Field in Liyang City, Changzhou City,
Jiangsu Province, China. The image scene covers an area of
240 × 240 pixels, with 80 spectral bands in wavelengths
ranging from 400 to 850 nm. The spectral resolution is 5 nm.

To evaluate the performance of the proposed algorithm with a
wide variety of subpixel targets, a target implant method [30] is
used in this paper. Based on a linear mixing model, a synthetic
subpixel target with spectrum z is generated by fractionally
implanting a desired target with spectrum t in a given pixel of
the background with spectrum b as follows [31]:

z = f · t+ (1− f) · b. (12)

In order to generate the targets, 40 panels are implanted
in a spatial grid, distributed in ten rows and four columns.
The sizes of the panels in the first, second, third, and fourth
columns are (in pixels) as follows: 1 × 1, 2 × 2, 3 × 3,
and 4 × 4, respectively. There are four panels and 30 target
pixels in each row and 300 target pixels in the whole image
scene. The andradite is selected as the target material from the
Environment for Visualizing Images (ENVI) standard spectral
library, and the target spectrum is shown in Fig. 2. Each row of
the panels is made up of subpixels with 5%, 10%, 15%, 20%,
25%, 30%, 35%, 40%, 45%, or 50% abundance of the target
material, and the rest is background. An image of band 10 from
this data set is shown in Fig. 2.

The second data set was collected by the Hyperspectral
Digital Image Collection Experiment (HYDICE) sensor. The
data set has 210 spectral bands in the visible–near-infrared
range. The spatial resolution is 2 m, and the spectral resolution
is 10 nm. After removing the water absorption, low SNR, and

Fig. 3. HYDICE image scene.

Fig. 4. AVIRIS image scene and the target locations.

bad bands (1–4, 76, 87, 101–111, 136–153, and 198–210), 162
bands of the data are retained. The image scene is 150 × 150
pixels, as shown in Fig. 3. This data set is an urban scene
in which there are nine vehicles, including 21 target pixels as
targets to be detected.

The third data set was collected by the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) from San Diego, CA,
USA. The spatial resolution is 3.5 m per pixel. The image
has 224 spectral channels in wavelengths ranging from 370 to
2510 nm. After removing the bands that correspond to the water
absorption regions, low SNR, and bad bands (1–6, 33–35, 97,
107–113, 153–166, and 221–224), 189 available bands of the
data are retained in the experiments. From this hyperspectral
data set, a region with the size of 200 × 240 pixels is selected
to test the detection performance, as shown in Fig. 4. There are
six planes including 90 target pixels as targets to be detected in
the scene, as shown in Fig. 4.

B. Experiment Settings

For the PHI data set, the spectral signatures of the target
training samples {ati}i=1,2,...Nt

are collected from Nt = 16
pixels from a 4 × 4 panel of the tenth row. The background
signatures {abi}i=1,2,...Nb

are generated by the pixels in the
outer region of a dual window. The sizes of the OWR and
IWR are set as 17 × 17 and 7 × 7, respectively, and there are
Nb = 240 background training samples.

For the HYDICE data set, the spectral signatures of the
target {ati}i=1,2,...Nt

are collected from Nt = 3 pixels from
the two targets marked in green, as shown in Fig. 3. The
sizes of the OWR and IWR are set as 19 × 19 and 5 × 5,
respectively, and there are Nb = 336 background training
samples {abi}i=1,2,...Nb

.
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Fig. 5. Effect of the sparsity level on the detection performance of SRBBH-TD. (a) PHI. (b) HYDICE. (c) AVIRIS.

Fig. 6. AUC comparison for three data sets at different sparsity levels for both hypotheses in SRBBH-TD. (a) PHI. (b) HYDICE. (c) AVIRIS.

For the AVIRIS data set, we select one pixel from each plane
as the target atoms, and Nt = 6. The sizes of the OWR and
IWR are set as 17 × 17 and 7 × 7, respectively, and Nb = 240.

SRBBH-TD is compared to the following algorithms:
1) SMF; 2) MSD; 3) ACE; and 4) STD. For all the detectors, we
use the same given target spectrum as the input a priori target
spectrum. In the case of SMF, the target signature is the mean
of the target atoms {ati}i=1,2,...Nt

. We adopt the pixels falling
in the OWR to estimate the background covariance matrix in
the SMF and ACE algorithms and to construct the background
atoms in STD and SRBBH-TD. In the case of MSD, the
eigenvectors corresponding to the significant eigenvalues of the
covariance matrices obtained from the training atoms are used
to generate the basis for the subspaces [32].

C. Detection Performance

First, we demonstrate how the detection results of SRBBH-
TD are affected by the sparsity level of the representation.
The receiver operating characteristic (ROC) curves for the
three images, using the OMP with sparsity levels K0 =
4, 6, 8, 10, 12, 14, 16, 20, and 30, are shown in Fig. 5(a)–(c).
For a very small K0, the sparsity-based techniques are re-
duced to a simple template matching and lead to underfit-
ting, which leads to a weakening of the final target detection
performance. For example, when K0 = 4, there is an inferior
detection performance for all three data sets, particularly the

AVIRIS data set. In general, the detection performance im-
proves as the sparsity level K0 increases to a certain level.
However, if K0 is too large, the solution becomes dense and
involves both the background and target atoms, particularly
in the null hypothesis, and thus, its discriminative power is
reduced. In this paper, the sparsity level K0 is chosen to be
close to the size of the target dictionary. When comparing
the detection performance with different values of K0, the
optimal value of K0 for the proposed SRBBH-TD algorithm
in the PHI, HYDICE, and AVIRIS data sets is 10, 14, and
10, respectively. In a similar way, the optimal value of K0

for the STD algorithm in the three data sets is 6, 4, and 4,
respectively.

Second, the effectiveness of the same sparsity level constraint
is examined by comparing the detection performance when
the sparsity levels for two hypotheses (K0 for H0 and K1 for
H1) are different. From the aforementioned experiment results,
when the sparsity levels are set as the same in SRBBH-TD,
the optimal value for the PHI, HYDICE, and AVIRIS data
sets is 10, 14, and 10, respectively. Therefore, in the following
experiment, we will group the experiment into two parts for
each data set, examining the detection performance of SRBBH-
TD when K0 = 4, 6, 8, 10, 12, 14, 16, 20, and 30 and K1

is fixed as the optimal value and then examining the detection
performance of SRBBH-TD when K0 is fixed as the optimal
value and K1 = 4, 6, 8, 10, 12, 14, 16, 20, and 30. The
area under the curve (AUC) curves are shown in Fig. 6. We can
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Fig. 7. Detection performance comparison of five detectors for the three data sets. (a) PHI. (b) HYDICE. (c) AVIRIS.

Fig. 8. Detection performance for targets with different implanted fractions by two methods. (a) SRBBH-TD. (b) STD.

clearly see that the two curves will cross each other above the
so-called optimal value of sparsity level. Moreover, the crossing
point is the peak of the AUC curves, which means that SRBBH-
TD will obtain better detection performance when the sparsity
levels are set as the same for both hypotheses.

Third, the detection performance of the proposed detector
is evaluated. The sparsity level is set as the aforementioned
optimal value in the three data sets. The experimental results for
the five detectors are provided through ROC curves, as shown
in Fig. 7. This shows that the proposed SRBBH-TD performs
significantly better than STD in all three data sets, and SRBBH-
TD outperforms all the other detectors in the HYDICE and
AVIRIS data sets. STD, in particular, performs poorly in the
PHI data set, which may be related to the implanted fraction of
the targets in the image scene.

The performance in detecting subpixel targets with different
fractions is now further analyzed. The sparsity level is again set
as the aforementioned optimal value. The experimental results
presented by a 3-D surface are shown in Fig. 8. The X, Y,
and Z axes respectively represent the threshold, the implanted
target fraction, and the number of the detected real targets.
The number of the real targets at each fraction is 30. When
the detection value D(x) of the input pixel is larger than a
particular value y, then the input test pixel will be declared as
a target. If the real implanted targets present detection values

larger than y, then they can be labeled as detected real targets.
For simplicity and consistency, the detection values of all the
pixels in the image scene are sorted according to descending
order, and the threshold η is set to segment a certain number of
pixels with the largest detection values, such as 30, 60, 90, 120,
150, 180, 210, 240, 270, and 300. The number of detected real
target pixels can be computed from these different segmented
results by inspecting the target references.

The results clearly show that the dark region of the surface by
STD is larger than that by SRBBH-TD. The dark area indicates
that the number of detected real targets is zero at an implanted
target fraction and threshold. Therefore, the results demon-
strate that SRBBH-TD outperforms STD in detecting sub-
pixel targets. In detail, when the threshold is 30, SRBBH-TD
can detect one target pixel with a 30% target fraction, three
target pixels with a 35% target fraction, and one target pixel
with a 40% target fraction, but STD cannot detect target
pixels with a fraction of less than 40%. When the threshold
reaches 300, SRBBH-TD can detect one target pixel with a
5% target fraction, six target pixels with a 10% target fraction,
and all the target pixels with a target fraction of more than
10%. Meanwhile, STD can detect ten target pixels with a
20% target fraction and all the target pixels with a target
fraction of more than 20%. With the other thresholds, it is a
similar case.
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V. CONCLUSION

This paper proposes a SRBBH model for target detection
in hyperspectral imagery. In the proposed model, the pixel
observation can be effectively and separately represented by
different sparse representations under different hypotheses: The
pixel spectrum can be modeled by the background training
samples under the null hypothesis and by both the target and
background training samples under the alternative hypothesis.
In this way, the pixel can be modeled by different representa-
tions according to its label (target or background), incorporating
the prior information of the class label for the training samples.
In the proposed detector, the sparse representation is recovered
by the OMP algorithm, and the sparsity level in both hypotheses
is set as the same. The detection decision can be obtained from
the reconstruction residuals.

The proposed algorithm and several state-of-the-art detectors
were implemented with different sparsity levels in three HSIs.
The experiment results reveal the following: 1) The proposed
model with reasonable dictionaries outperforms the original
STD model in separating the target from background; 2) the
same sparsity level constraint is suitable for SRBBH model,
which will make the SRBBH-TD obtain a better detection
performance; 3) the value of the sparsity level is roughly around
the size of the target dictionary, and it is therefore easy to
determine the value of the sparsity level; and 4) in general,
the proposed SRBBH model is effective for hyperspectral target
detection, particularly for subpixel target detection.

Our future research will investigate the construction of better
dictionaries, such as a pure background dictionary. The target
dictionary is randomly collected from the training data, and
the performance of the proposed detector can vary with the
dictionary. We will therefore focus on how to automatically
construct an optimal target dictionary. We will also investigate
the computational complexity of the detector.

ACKNOWLEDGMENT

The authors would like to thank the handling editor and
anonymous reviewers for their careful reading and helpful
remarks.

REFERENCES

[1] M. Borengasser, W. S. Hungate, and R. Watkins, Hyperspectral Remote
Sensing—Principles and Applications. Boca Raton, FL, USA: CRC
Press, 2008.

[2] D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral subpixel target
detection using the linear mixing model,” IEEE Trans. Geosci. Remote
Sens., vol. 39, no. 7, pp. 1392–1409, Jul. 2001.

[3] J. P. Kerekes and J. E. Baum, “Spectral imaging system analytical model
for subpixel object detection,” IEEE Trans. Geosci. Remote Sens., vol. 40,
no. 5, pp. 1088–1101, May 2002.

[4] M. S. Stefanou and J. P. Kerekes, “Image-derived prediction of spec-
tral image utility for target detection applications,” IEEE Trans. Geosci.
Remote Sens., vol. 48, no. 4, pp. 1827–1833, Apr. 2010.

[5] D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imag-
ing applications,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29–43,
Jan. 2002.

[6] S. Matteoli, M. Diani, and G. Corsini, “A tutorial overview of anomaly
detection in hyperspectral images,” IEEE Aerosp. Electron. Syst. Mag.,
vol. 25, no. 7, pp. 5–28, Jul. 2010.

[7] D. Manolakis, G. Shaw, and N. Keshava, “Comparative analysis of
hyperspectral adaptive matched filter detectors,” in Proc. SPIE Conf.
Algorithms Multispectr., Hyperspectr., Ultraspectr. Imagery 6, Apr. 2000,
vol. 4049, pp. 2–17.

[8] N. M. Nasrabadi, “Regularized spectral matched filter for target recog-
nition in hyperspectral imagery,” IEEE Signal Process. Lett., vol. 15,
pp. 317–320, 2008.

[9] L. L. Scharf and B. Friedlander, “Matched subspace detectors,”
IEEE Trans. Signal Process., vol. 42, no. 8, pp. 2146–2157,
Aug. 1994.

[10] D. Manolakis, D. Marden, and G. A. Shaw, “Hyperspectral image process-
ing for automatic target detection applications,” J. Lincoln Lab., vol. 14,
no. 1, pp. 79–116, 2003.

[11] S. Kraut, L. L. Scharf, and L. T. McWhorter, “Adaptive subspace
detectors,” IEEE Trans. Signal Process., vol. 49, no. 1, pp. 1–16,
Jan. 2001.

[12] X. Hang and F.-X. Wu, “Sparse representation for classification of tumors
using gene expression data,” J. Biomed. Biotechnol., vol. 2009, pp. 1–6,
2009.

[13] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image clas-
sification via kernel sparse representation,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 1, pp. 217–231, Jan. 2013.

[14] U. Srinivas, Y. Chen, V. Monga, N. M. Nasrabadi, and T. D. Tran,
“Exploiting sparsity in hyperspectral image classification via graphical
models,” IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3, pp. 505–509,
May 2013.

[15] Z. Guo, T. Wittman, and S. Osher, “L1 unmixing and its application
to hyperspectral image enhancement,” in Proc. SPIE Conf. Algorithms
Technol. Multispectr., Hyperspectr., Ultraspectr. Imagery 15, Apr. 2009,
vol. 7334, pp. 1–9.

[16] L. Zhang, M. Yang, and X. Feng, “Sparse representation or collaborative
representation: Which helps face recognition?” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 471–478.

[17] Y. Yuan, X. Li, Y. Pang, X. Lu, and D. Tao, “Binary sparse nonnegative
matrix factorization,” IEEE Trans. Circuits Syst. Video Technol., vol. 19,
no. 5, pp. 772–777, May 2009.

[18] Y. Han, F. Wu, D. Tao, and J. shao, “Sparse unsupervised dimensional-
ity reduction for multiple view data,” IEEE Trans. Circuits Syst. Video
Technol., vol. 22, no. 10, pp. 1485–1496, Oct. 2012.

[19] L. Zhang, L. Zhang, D. Tao, and X. Huang, “Sparse transfer manifold em-
bedding for hyperspectral target detection,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 2, pp. 1030–1043, Mar. 2014.

[20] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Sparse representation for
target detection in hyperspectral imagery,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 3, pp. 629–640, Jun. 2011.

[21] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Simultaneous joint spar-
sity model for target detection in hyperspectral imagery,” IEEE Geosci.
Remote Sens. Lett., vol. 8, no. 4, pp. 676–680, Jul. 2011.

[22] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Kernel sparse representa-
tion for hyperspectral target detection,” in Proc. IEEE IGARSS, 2012,
pp. 7484–7487.

[23] J. Wright, A. Y. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[24] G. Healey and D. Slater, “Models and methods for automated material
identification in hyperspectral imagery acquired under unknown illumi-
nation and atmospheric conditions,” IEEE Trans. Geosci. Remote Sens.,
vol. 37, no. 6, pp. 2706–2717, Jun. 1999.

[25] B. Thai and G. Healey, “Invariant subpixel material detection in hyper-
spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 3,
pp. 599–608, Mar. 2002.

[26] J. A. Tropp and S. J. Wright, “Computational methods for sparse solution
of linear inverse problems,” Proc. IEEE, vol. 98, no. 6, pp. 948–958,
Jun. 2010.

[27] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measure-
ments via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53,
no. 12, pp. 4655–4666, Dec. 2007.

[28] H. Kwon, S. Z. Der, and N. M. Nasrabadi, “Dual-window-based anomaly
detection for hyperspectral imagery,” in Proc. SPIE, 2003, vol. 5094,
pp. 148–158.

[29] A. Banerjee, P. Burlina, and C. Diehl, “A support vector method
for anomaly detection in hyperspectral imagery,” IEEE Trans. Geosci.
Remote Sens., vol. 44, no. 8, pp. 2282–2291, Aug. 2006.

[30] M. S. Stefanou and J. P. Kerekes, “A method for assessing spectral image
utility,” IEEE Trans. Geosci. Remote Sens., vol. 47, no. 6, pp. 1698–1706,
Jun. 2009.

[31] S. M. Schweizer and J. M. F. Moura, “Efficient detection in hyperspec-
tral imagery,” IEEE Trans. Image Process., vol. 10, no. 4, pp. 584–597,
Apr. 2001.

[32] H. Kwon and N. M. Nasrabadi, “A comparative analysis of kernel sub-
space target detectors for hyperspectral imagery,” EURASIP J. Appl.
Signal Process., vol. 2007, no. 1, pp. 193–193, Jan. 2007.



1354 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 3, MARCH 2015

Yuxiang Zhang (S’13) received the B.S. degree
in sciences and techniques of remote sensing from
Wuhan University, Wuhan, China, in 2011, where
she is currently working toward the Ph.D. degree in
sciences and techniques of remote sensing.

Her research interests include hyperspectral image
processing, target detection, sparse representation,
and signal processing.

Bo Du (M’10) received the B.S. degree from Wuhan
University, Wuhan, China, in 2005 and the Ph.D.
degree in photogrammetry and remote sensing from
the State Key Laboratory of Information Engineering
in Surveying, Mapping and Remote Sensing, Wuhan
University, in 2010.

He is currently an Associate Professor with the
School of Computer, Wuhan University. His major
research interests include pattern recognition, hyper-
spectral image processing, and signal processing.

Liangpei Zhang (M’06–SM’08) received the B.S.
degree in physics from Hunan Normal University,
Changsha, China, in 1982, the M.S. degree in optics
from the Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an,
China, in 1988, and the Ph.D. degree in photogram-
metry and remote sensing from Wuhan University,
Wuhan, China, in 1998.

He is currently the Head of the Remote Sens-
ing Division, State Key Laboratory of Information
Engineering in Surveying, Mapping, and Remote

Sensing, Wuhan University. He is also a “Chang-Jiang Scholar” Chair Pro-
fessor appointed by the Ministry of Education of China. He is currently a
Principal Scientist for the China State Key Basic Research Project (2011–2016)
appointed by the Ministry of National Science and Technology of China to lead
the remote sensing program in China. He has more than 300 research papers.
He is the holder of five patents. His research interests include hyperspectral
remote sensing, high-resolution remote sensing, image processing, and artificial
intelligence.

Dr. Zhang is a Fellow of the IEE, Executive Member (Board of Gover-
nor) of the China National Committee of International Geosphere-Biosphere
Programme, Executive Member of the China Society of Image and Graphics,
etc. He regularly serves as a Cochair of the series SPIE Conferences on
Multispectral Image Processing and Pattern Recognition, Conference on Asia
Remote Sensing, and many other conferences. He edits several conference
proceedings, issues, and Geoinformatics Symposiums. He also serves as an
Associate Editor of the International Journal of Ambient Computing and Intel-
ligence, International Journal of Image and Graphics, International Journal of
Digital Multimedia Broadcasting, Journal of Geo-spatial Information Science,
Journal of Remote Sensing, and the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


