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Abstract

The mixed pixel is a common problem in remote sensing classification. Even though the composition of these pixels for different classes

can be estimated with a pixel un-mixing model, the output provides no indication of how such classes are distributed spatially within
these pixels. Sub-pixel mapping is a technique designed to use the output information with the assumption of spatial dependence to
obtain a sharpened image. Pixels are divided into sub-pixels, representing the land cover class fractions. This paper proposes a new

algorithm based on a back-propagation (BP) network combined with an observation model. This method provides an effective method
of obtaining the sub-pixel mapping result and can provide an approximation of the reference classification image. With the upscale
factor, the model was tested on both a simple artificial image and a remote sensing image, and the results confirm that the proposed

mapping algorithm has better performance than the original BPNN model.
r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Remotely sensed images usually contain both pure and
mixed pixels. Hard classification techniques assign
every pixel (often incorrectly) to a single class; a loss of
information is inevitable during this process, because
mixed pixels can be composed of different classes in
varying combinations. Soft classification techniques (or
sub-pixel classifiers) were introduced to compensate for
this loss. They assign pixel fractions to the land cover
classes corresponding to the areas represented inside a
pixel. A soft classification yields a number of fraction
images equal to the number of land cover classes. However,
the assignment to these classes renders no information
about the location of these fractions inside the pixel.
Atkinson [3] stated that it is possible to assign the fractions
spatially to so-called ‘‘sub-pixels’’, where sub-pixels
are a finer resolution representation of a parent pixel.
Sub-pixels can be either pure or mixed. In this work, sub-
pixels will be assumed pure, belonging to one class only.
e front matter r 2008 Elsevier B.V. All rights reserved.
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Sub-pixel mapping can be seen as a technique that uses the
information present in a soft classification to attain a
higher resolution representation. The aim is to accord
fractions from a sub-pixel classification spatially to the sub-
pixels that are parts of a pixel.
Many different techniques [1,3,6,10,11,13,18,20,21] have

been proposed to tackle the sub-pixel mapping issue. These
techniques are based on the concept of spatial dependence,
which refers to the tendency of proximate sub-pixels to be
more alike than those located far apart. In all these
approaches, the detail and accuracy of the super-resolution
map were greater than the corresponding hard-classified
images. Although these super-resolution mapping techniques
were successful to varying degrees, there is a limit to the detail
and accuracy of the resulting mapping image, since these
techniques are based only on the soft-classified proportion
data at the pixel level and the spatial dependence assumption.
Therefore, it is suggested that additional noise produced
during the process of fractioning an image could not be
reduced. This noise could be detrimental to the location of
sub-pixels inside a pixel because it leads to inaccurate traces
and blurs the final sub-pixel mapping image. Therefore, it is
still necessary to develop new super-resolution mapping
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methods to eliminate the additional noise and enhance the
precision of the sub-pixel mapping.

Neural networks have proven their modeling capabilities
in many instances and can learn relations from examples,
without making assumptions about data distribution or the
nature of the relation between inputs and outputs [4,16].
The building blocks of artificial neural networks (ANNs)
are artificial neurons. These neurons, like biological
neurons, are connected to many other neurons. To
compute the output of a neuron, each input is multiplied
by a weight factor. The sum of these weighted inputs is
called the neuron activation. The neuron output is
calculated as a function of the activation. It is well known
that neural networks [2,7,14] can be applied to sub-pixel
(soft) classification. However, sub-pixel mapping is clearly
distinct and it can use the sub-pixel classification as an
input. The networks used in this paper are restricted to
feed-forward networks, and feed-back connections are not
possible. Using sub-pixel mapping examples, the network is
trained to learn the most appropriate locations. A common
procedure to find the appropriate network weights is the
standard back-propagation (BP) algorithm, it has a slow
rate of convergence and the convergence is confronted with
locally optimal phenomenon. So the algorithm with
momentum coefficient solution is presented here. At the
same time there is also a drawback that neural networks
are often considered to be black box models. Even though
the sub-pixel mapping result is not precise, it is difficult to
improve the result from the structure directly because of
the limitation of the realization of the complex model. In
order to overcome this drawback, a new observation model
is proposed in this paper that is applied after the BP neural
network is processed. The observation model describes the
relationship between the fraction image and the spatial
distribution of sub-pixels. In fact, the fractions yielded by
the soft classification technology can be regarded as the
low-resolution images, while the sub-pixels representing the
land cover class fractions can be regarded as the high-
resolution images. An iterative algorithm based on a
constrained least-squares (CLS) solution is presented in
the model to lessen the noise produced by the sub-pixel
mapping with the neural network. Experiments and
comparisons show that the improved BP model presented
in this paper is an efficient approach in sub-pixel mapping.

The rest of this paper is organized as follows. Section 2
provides a detailed description of the proposed BPNN sub-
pixel mapping model. Section 3 gives the experimental
results of the improved algorithm, which are compared
with hard classification and the original BPNN algorithm.
Finally, a conclusion is drawn in Section 4.

2. Methods

2.1. Sub-pixel mapping

The key problem in sub-pixel mapping is determining the
most likely locations of the fractions of each land cover
class within the pixel. This can be accomplished by
assuming spatial dependence, i.e., the tendency for spatially
proximate observations of a given property to be more
alike than more distant observations. Land cover is
spatially dependent both within and between pixels on
the condition that the intrinsic scale of variation is not
smaller than the sampling scale imposed by the image
pixels [3].
The large pixels are divided into smaller ones and the

land cover is allocated to the latter, in such a way that
spatial dependence is maximized. The main advantage of
applying this technique is that it will avoid losing
important information. There are S2 sub-pixels per pixel,
with S representing the scale factor in the row and column
directions. From the coarse resolution soft classification,
the values of the sub-pixels are computed. The neighboring
pixel values take an important role and express spatial
dependence. Since each sub-pixel is surrounded by
neighboring ones, they are affected by each other, possibly
belonging to the same land cover class. A simple
representation of the problem and two possible scenes are
given in Fig. 1. There is a 3� 3 coarse spatial resolution set
of pixels, with associated proportions of one land cover
class. A single coarse resolution pixel is to be divided into
16 sub-pixels, each corresponding to 1/16 of the coverage
of the coarse resolution pixel. The value for a sub-pixel (xij)
was calculated as:

xij ¼
1 if sub-pixel j is assigned to land cover class i

0 otherwise

�

Summing xij for all S2 sub-pixels returns the spatial
dependence for that specific configuration of the sub-pixels
inside the pixel (Eq. (1)):

Zi ¼
XS2

j¼1

xij (1)

In order to reach a certain fraction value Zi, there are two
different arrangements in Fig. 1: the number of sub-pixels
assigned to the land cover class can both correspond to the
indicated proportion. But in fact, when enumerating all
possible configurations with C possible land cover classes,
there are CðS

2Þ possible configurations for every pixel
through permutation 2003. To find the optimal configura-
tion of the sub-pixels, the image was initialized with a
random configuration for every pixel, yet respecting the
fraction values.

2.2. Neural network model

2.2.1. Traditional BP network

ANNs are powerful tools for the prediction of non-
linearities. These mathematical models comprise individual
processing units called neurons that resemble neural
activity. Each processing unit sums weighted inputs, and
then applies a linear or nonlinear function to the resulting
sum to determine the outputs. The neurons are arranged in
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Fig. 1. A raster grid of 3� 3 coarse pixels, each divided into 4� 4 sub-pixels.
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layers and are combined through excessive connectivity.
The BP networks are extensively employed in back-analysis
because of their simplicity and power to extract useful
information from patterns (i.e., samples). It allows
specification of multiple input criteria and the generation
of multiple output recommendations, without pre-assump-
tions regarding the form of functions related to input and
output variables. The BP model eliminates the limitations
of the traditional regression methods, and accurately
establishes the mapping between the input and output
variables. It can approximate an arbitrary nonlinear
function with better precision. It is a monitored learning
method, and the training course is stopped when the error
function reduces to below a given tolerance. Then, the fixed
structure of a BP model is obtained. The sigmoid function
is widely employed as the activation function:

f ðxÞ ¼
1

1þ e�x
(2)
2.2.2. Improved BP network algorithm

BP network has a good diagnostic capability, but they
too have left some problems unsolved, including those of
local and slow convergence in training. There are many
learning algorithms or modifications of the BP algorithm in
the literature [5,15,17,19], momentum coefficients aimed to
decrease the BP network’s sensitivity to small details in the
error surface, accelerate the convergence, normally with
momentum coefficient a network can slide through some
shallow local minima and the convergence speed can be
improved. The adjustments of the learning rate and
momentum coefficient are given as follows.

Let xi (i=1, 2, y, m) be the inputs to the network, yj

(j=1, 2, y, p) the outputs from the hidden layer, ok (k=1,
2, y, q) the output layer and wjk the connection weight
from the jth hidden node to the kth output node. By adding
an additional term proportional to previous weights into
the current weights wfk(n) based on the BP method, new
weights wfk(n+1) can be produced as follows:

wjkðnþ 1Þ ¼ ð1� aÞZdkyj þ awjkðnÞ (3)

dk ¼ ðdk � okÞokð1� okÞ (4)

where n is the training epoch, Z denotes the learning rate, a
is the momentum coefficient, dk is the target output value,
and dk is the error derivative of BP. When the iteration
converges to an acceptable error, learning ends and the
weights are determined. In the training process, improved
BPNN is applied to construct a local sub-pixel mapping
model that describes the relationship between fractions in
the local window and the spatial distribution of sub-pixels
assigned to the target in the central coarse pixel [22]. For
convenience, it is explained as a simple expression (5). Let
the zoom factor as 2, under this condition, every neuron
represented coarse pixel can be affected by the eight
neighbors and the application of the influence is different.
The nine neurons in a fractional image are taken as input
of the network, according to centered neuron, there are
four sub-pixels in the model. The relationship expressed
can be described as:

xi�1;j�1 xi�1;j xi�1;jþ1

xi;j�1 xi;j xi;jþ1

xiþ1;j�1 xiþ1;j xiþ1;jþ1

2
64

3
75! y1

ij y2
ij

y3
ij y4

ij

" #
(5)

where

yk
ij ¼

1 if it is corresponding to target class

0 otherwise

(

k ¼ 1; 2; 3; 4 (6)

After the training process is finished, the two groups of
the weight values can be acquired. In the predicting
process, the input pattern is normalized to (0–1) to ensure
that similar training samples can be obtained for as many
different images as possible. Obviously the number of the
output nodes in the network is determined by the factor
size, but the number of the input nodes is changeless. Each
sub-pixel in the sub-pixel mapping result is an output
pattern, exported in the form of Y ¼ yk

ij (k ¼ 1, 2, 3, 4), in
this way the outputs Y are not integral, but the probability
of sub-pixel in the high-resolution image cannot be
dissatisfied. The land covers of this sub-pixel are needed
to label.
Two ways of deriving the sub-pixel composition from the

network output are considered. One method simply assigns
each sub-pixel to the class with the highest output value.
This method, however, can only be used for small images
with few land cover classes and a small up-scaling factor S.
Another method maintains the fractions of the different
classes. Using the second method, the output fraction was
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then weighted in respect to the sum of the outputs in the set
for that sub-pixel. Differences with the first method were
found when the highest value belonged to the class whose
total number of sub-pixels to be assigned (defined by the
fraction values) had already been exhausted [12].

2.2.3. Architecture of the network

A three-layer network was used. The input layer
consisted of nine neurons, corresponding to a central pixel
and its eight surrounding neighbors. This implied that sub-
pixels could not be calculated for border pixels, as part of
the information about their surroundings was missing.

The input values were the membership values of these
pixels for a certain class. The (unknown) spatial config-
uration was assumed equal for all classes. Consequently,
the network was trained using membership values regard-
less of their originating class. In this way, only one network
for all classes had to be trained, instead of having to train a
separate network for each land cover class. The number of
neurons in the hidden layer was set at 15. In this training
algorithm, an input pattern is first propagated through the
network in the so-called feed-forward phase. Afterwards,
the difference between the calculated and the desired
output is back-propagated from the output neurons to the
first layer of the network, thereby adjusting the network
weights in the opposite direction of the derivative of the
network error with respect to each individual network
weight. The learning rate was set at 0.1, and a momentum
coefficient of 0.2 was applied. It is believed that at that
point network generalization is maximal. By repeating this
multiple times for each pattern in a training set, the
Training Input layer Hidden lay

the synthetic image
of low resolution

Test

the synthetic image
of low resolution

Ws2
o

Fig. 2. Neural netwo
network can be taught to map the inputs on the correct
outputs. The network architecture, together with the input
and output representation, is illustrated in Fig. 2.

2.3. Sub-pixel mapping algorithm based on an observation

model

BP is a popular algorithm employed for training
multilayer connectionist learning systems with nonlinear
activation functions (sigmoid). However, its drawback has
been partly attributed to the following: (1) there are some
flat-spot problem regions, where the derivative of the
sigmoid activation function approaches zero, and the
weight changes become negligible; (2) because the gradient
descent algorithm is used here, the constructed high-
resolution image is not very good, as indented shapes
appear in the boundary, which makes the algorithm
inefficient. To resolve this problem, an observation model
is introduced in every fraction image after the BP.
Fryer and McIntosh, proposed a super-resolution image

reconstruction method (FM) [8]. In their method, the
observing model must be established in which the relation-
ship between the low-resolution images and the high-
resolution images is strictly geometrical counterpoint,
that is, each pixel in the low-resolution image must be
‘‘mapped’’ onto the high-resolution pixel coordinate
system, thus determining which high-resolution pixels are
affected by each individual low-resolution one [9]. The
observation model was incorporated after the BP worked
in order to overcome the problems mentioned before. This
method is defined as BPFM in this paper. For example, in
er Output layer
Output of the high
resolution image

by harden process
(0,1)

s2

Ws2

btain the weight value (parameter)

Sum

result of the height
resolution image

order of
the value

rk architecture.
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Fig. 3. Observation model: low-resolution pixels mapped on the high-

resolution grids.
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Fig. 3, for pixel A, we can obtain the following function:

y ¼
½x1 þ x2 þ � � � þ x16�

r2
(7)

where y is the gray value of the low-resolution image, xi

represents the gray values of the high-resolution image, and
r is the enhancement ratio, which in this case is 4.

Therefore, the observation model can be expressed in
matrix notation as:

y ¼ Axþ n (8)

where y is a vector composed of the gray values of the low-
resolution image pixels, x contains the required high-
resolution image pixels, A is the coefficients matrix, and n is
the noise matrix that is produced in the process of BP sub-
pixel mapping. From Section 2, the sub-pixel mapping
result xBP based on the BP algorithm has been obtained
when the value of y is unchangeable; the smaller jjx� xBPjj

is, the better the result will be. Assuming a constrained
least-squares (CLS) solution, only the noise matrix n is
considered minimal, and we have the solution:

x ¼ argminjjnjj2 ¼ argminjjy� Axjj2 (9)

The above is considered as a constrained optimization,
just corresponding to:

x ¼ argminfjjy� Axjj2 þ ajjCxjj2g (10)

where a is the selective parameter controlling the terms, C

is a Laplacian operator, which can smooth the noise:

q2f ðx; yÞ
qx2

þ
q2f ðx; yÞ

qy2
¼ f ðxþ 1; yÞ þ f ðx� 1; yÞ

þ f ðx; yþ 1Þ þ f ðx; y� 1Þ

� 4f ðx; yÞ (11)

We produce the function:

x ¼ ½ATAþ aCTC ��1 � ATy (12)

An iterative reconstruction algorithm is proposed in this
process; the sequence of iterations is generated by:

xk ¼ xBP þ ½A
TY� ðATAþ akQ

TQÞxBP� (13)
The criterion used to terminate the iterations is
defined as:

jjxk � xBPjj
2

jjxBPjj
2

pd (14)

where d is the iteration termination coefficient.
3. Experiments

3.1. Synthetic imagery

The sub-pixel mapping algorithm should be applied on
fraction images of a spatial resolution. The result can then
be compared to a hard classification of a finer resolution
image. Following this approach, errors due to co-registra-
tion and poor soft classification are introduced. In these
experiments, the algorithm was developed and tested only
on synthetic imagery. In that way it was possible to
concentrate solely on errors introduced by the sub-pixel
mapping process. Synthetic imagery can be created by
degrading hard classifications to coarser spatial resolutions
by applying an averaging filter. The source material is
either real or artificial. The resulting images are interpreted
as fraction images.
For analysis of convenience, the artificial images are

imitated from reference [13] to aid in the design and
development of the algorithm. Their usefulness is deter-
mined by their size, resulting in a considerable reduction of
computation time. Visual checking of the algorithm’s
performance is easy on these images as they represent
simple geometric figures. The real imagery used in this
work is from a Landsat Thematic Mapper (TM) image of
the northern part of Wuhan in Hubei Province (October
11, 1998; 30m resolution). The primary objective of the
survey was to discriminate various objects. Hence, four
major land cover classes can be distinguished: river, urban
city, vegetation, and lake. These images are used as input
for a sub-pixel mapping. The aforementioned algorithm
was tested on two different images. Experiments were
conducted to test its performance. Consistent comparisons
among BPFM, traditional MLC (Maximum Likelihood
Classification) algorithms and BP neural network are
completed. The estimation of classification accuracy for
the different methods is provided.
3.2. Experiment 1: artificial imagery

The accuracy is calculated in terms of percent correctly
classified (PCC) and the Kappa coefficient (Cohen’s
Kappa) of agreement. In addition, there is a new assessable
method called PCC0, which is different from PCC. In order
to take out the effect of the accuracy assessment brought
by the existing un-mixed pixels, it is only concerned with
the right proportion of mixed pixels in the imagery, as
opposed to all undistinguished pixels. Visual assessment of
the results, however, remains very important.
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The tricuspoid image was used as the training set, while
the test set contained the concentric circles membership
values. The trained network was then used to predict the
spatial pattern for the concentric circles. The original
concentric circles image, illustrated in Fig. 4(a), has two
classes. The BP network was trained on a tricuspoid image,
which together with the derived fraction image is shown in
Fig. 4(b), and (c). The hard classification of the degraded
artificial image and the sub-pixel mappings using the BP
and BPFM algorithm are shown in Fig. 4(d)–(f).
Fig. 4. Concentric circles image scale 4. (a) Original artificially image, (b) tricu

(e) sub-pixel mapping for BP, and (f) sub-pixel mapping for BPFM.
Visual assessment leads to the conclusion that sub-pixel
mapping makes sense, and the proposed method is
efficient. The hardened soft classification result leads to
blurry concentric circles with scale 4. The two sub-pixel
mapping methods compensate for this. In some regions,
there are many mixed pixels. The result of the BP algorithm
is not accurate, as indented holes are introduced into the
characters, which is not a desirable feature, always giving a
blurry scene. The proposed method suffers less from this
side-effect and makes the border of the classification image
spoid image for training, (c) fraction image class 1, (d) hard classification,
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Table 1

The accuracy statistics of the classification results with MLC, BP, and

BPFM

Concentric circle Real imagery

MLC BP BPFM MLC BP BPFM

Kappa coefficient 0.813 0.832 0.891 0.718 0.806 0.859

PCC (%) 90.7 96.1 98.6 75.0 88.2 91.1

PCC0 (%) 70.2 97.2 99.0 75.4 85.7 88.6

Fig. 5. Real image for Wuhan TM scale 4. (a) Original real image for TM, (

(e) sub-pixel mapping for BPFM, (f) zoom 6 for reference image, (g) zoom 6 fo

River; , Urban; , Vegetation; , Lake).
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smooth. It is considered better than the BP network
techniques.
This is also confirmed by the accuracy measures. Table 1

shows the Kappa coefficient, PCC and PCC0 values
for sub-pixel mapping of the synthetic shapes. BPFM
improves the Kappa coefficient from 0.813 to 0.891, an
improvement of 0.078, and BPFM exhibits the best overall
classification accuracy and the best percentage of correctly
classified pixels among all the test pixels considered, with a
gain of 7.9% and 2.5% over the MLC and BP algorithms,
b) reference image, (c) hard classification, (d) sub-pixel mapping for BP,

r hard classification, (h) zoom 6 for BP, and (i) zoom 6 for BPFM) ( ,
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Table 2

Comparison of three methods of classification by confusion matrix

Methods River Lake Vegetation Urban

MLC River 89 9 7 2

Lake 8 86 8 6

Vegetation 3 4 66 21

Urban 0 1 19 71

BP River 95 3 0 2

Lake 2 90 6 8

Vegetation 2 6 82 10

Urban 1 1 12 79

BPFM River 98 3 0 4

Lake 2 92 4 8

Vegetation 0 4 89 5

Urban 0 1 7 83

L. Zhang et al. / Neurocomputing 71 (2008) 2046–2054 2053
respectively. The PCC0 gives an improvement over the
MLC and BP algorithms of 19.8% and 1.9%. This is due to
the existence of the mixed pixels; the hard classification
method cannot correctly classify these pixels. On the other
hand, BPFM can overcome this problem.

3.3. Experiment 2: real imagery

Sub-pixel mapping of the real world case is considered a
more complex problem. With more land cover types, the
sub-pixel mapping algorithm has to solve a more complex
problem, as the classes of sub-pixels per pixel increase.

Here we tested the proposed algorithm using the 30-m
resolution multi-spectral Landsat TM image shown in
Fig. 5(a). There is an original reference image, which is
classified by the MLC method, and shown in Fig. 5(b); it is
regarded as the truth data. Fig. 5(c) illustrates the hard
classification of the degraded reference image. The neural
networks for prediction of the real imagery were trained on
an analogical classified TM image, its primary makeup are
still river, urban city, vegetation, and lake, which is in the
upper east part of Wuhan and holds the same assumption
of spatial dependence. These two different classifications
are chosen to demonstrate the same spatial dependence
present among features in both images. It is believed
that the more similar the images are, the higher the
accuracy will be [13]. Using this trained image, the sub-
pixel mapping images of the degraded real imagery using
the BP model and the BPFM methods are shown in
Fig. 5(d) and (e).

The visual comparisons of the three classifications in
Fig. 5(b), (d), and (e) suggest varying degrees of accuracy
of pixel assignment. It can be seen that the BP model and
BPFM method have similar sub-pixel mapping results and
they can provide much better location of the sub-pixels
inside a pixel than the direct hard classification. Compar-
ison with the original classified image makes it hard to
differentiate between these two methods. In Fig. 5(f)–(i), an
area in the southeast of the image has been chosen for
display with a zoom factor of 6. This area clearly illustrates
the differences between the separate images. Fig. 5(f) and
(g) show the real reference image and its hardened
degraded version. It can be observed that a considerable
amount of detail is lost in the degradation process.
Comparison of the images (h) and (i) leads to the
conclusion that more isolated pixels, which can be taken
as noise, are preserved using the BP model than when using
the BPFM method. Taking a closer look at the lake in the
east of the BP network result shows that a set of scattered
pixels distributed in the lake are incorrectly classified. The
BPFM sub-pixel mapping results both show a smoothing
result between most, but not all, of the pixels, illustrating
the utility of a sub-pixel mapping.

The accuracy measures for the real imagery are still
acceptable, but worse compared to the synthetic imagery
results. Table 1 shows the Kappa coefficient and PCC
values for sub-pixel mapping of the real imagery compared
to the synthetic shapes. This could be expected, due to the
higher complexity of the real imagery. The confusion
matrix (Table 2), still the core of today’s classification
accuracy assessment, shows that the BPFM model
produces better classification results than other methods.
In the more detailed verification of the results, the BPFM
model exhibits the best overall classification accuracy, i.e.,
the best percentage of correctly classified among all the
testing pixels considered, with a gain of 16.1% and 2.9%
over the MLC and BP algorithms, respectively. PPC’
improves with a gain of 13.2% and 0.9%. The Kappa
coefficient was improved from 0.718 to 0.859, an improve-
ment by 0.141. In Table 2, vegetation was mainly confused
with urban and lake in quite a number of cases. The hard
classification, on the other hand, contained both quantity
and location errors.

4. Conclusions

Sub-pixel mapping aims at increasing the use, and
preserving the enhanced information content, of a soft
classification mapping. This paper investigated the BP
neural network, and proposed a new approach based on an
observation model to improve the accuracy of sub-pixel
mapping technology. Through dealing with the two
synthetic images, the superiority of the BPFM over the
original BPNN technique is proved with the assumption of
the additional factor. The accuracy and the visual effect of
the resulting image are both improved. Tests show that
BPFM is an efficient approach in remotely sensed sub-pixel
mapping. Future research will focus on further improve-
ment of the proposed techniques and sub-pixel mapping
accuracy assessment.
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