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Abstract—The subpixel mapping technique can specify the spa-
tial distribution of different categories at the subpixel scale by con-
verting the abundance map into a higher resolution image, based
on the assumption of spatial dependence. Traditional subpixel
mapping algorithms only utilize the low-resolution image obtained
by the classification image downsampling and do not consider
the spectral unmixing error, which is difficult to account for in
real applications. In this paper, to improve the accuracy of the
subpixel mapping, an adaptive subpixel mapping method based
on a maximum a posteriori (MAP) model and a winner-take-all
class determination strategy, namely, AMCDSM, is proposed for
hyperspectral remote sensing imagery. In AMCDSM, to better
simulate a real remote sensing scene, the low-resolution abundance
images are obtained by the spectral unmixing method from the
downsampled original image or real low-resolution images. The
MAP model is extended by considering the spatial prior models
(Laplacian, total variation (TV), and bilateral TV) to obtain the
high-resolution subpixel distribution map. To avoid the setting
of the regularization parameter, an adaptive parameter selection
method is designed to acquire the optimal subpixel mapping re-
sults. In addition, in AMCDSM, to take into account the spectral
unmixing error in real applications, a winner-take-all strategy
is proposed to achieve a better subpixel mapping result. The
proposed method was tested on simulated, synthetic, and real
hyperspectral images, and the experimental results demonstrate
that the AMCDSM algorithm outperforms the traditional subpixel
mapping methods and provides a simple and efficient algorithm to
regularize the ill-posed subpixel mapping problem.

Index Terms—Adaptive, hyperspectral image, maximum a pos-
teriori (MAP), remote sensing, spectral unmixing, subpixel map-
ping, winner-take-all strategy.

I. INTRODUCTION

HYPERSPECTRAL remote sensing images can provide
luxuriant spectral information [1]. However, because of

the impact of the sensor’s instantaneous field-of-view and the
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diversity of the land-cover classes [1], the mixed pixel is a
common phenomenon in hyperspectral remote sensing images.
Soft classification and spectral unmixing techniques [2], which
can estimate the proportion of every endmember inside a pixel
at a subpixel scale and yield a series of abundance maps of
the different categories [3]–[5], are often utilized to solve the
mixed pixel problem. However, they still do not divulge any
subpixel spatial distribution information for each endmember
within a pixel, and this subpixel information is very important
in real applications such as classification and target detection.
To obtain the spatial distribution of the different categories of
subpixels, the subpixel mapping method [6], [7] based on the
assumption of spatial dependence was proposed, which can
divide a pixel into several smaller subpixels in a finer resolution,
according to the subpixel mapping scale, and assigns a certain
land-cover class to each subpixel, based on the abundance
fractions [6].

Various subpixel mapping algorithms have been proposed.
The artificial neural network subpixel mapping algorithms, e.g.,
the Hopfield neural network [8]–[11], the back-propagation
(BP) neural network [12], [13], and the multilayer perceptron
neural network [14], have been successfully used for remote
sensing imagery. Verhoeye et al. [15] used a linear optimization
technique to solve the subpixel mapping problem by transform-
ing the issue into an optimization problem. Mertens et al. [16]
proposed a simple but effective method based on subpixel/pixel
spatial attraction models to satisfy the requirement of spatial
dependence. Atkinson et al. [17] presented a pixel-swapping
algorithm, which can exchange subpixels to obtain the optimal
result. Recently, subpixel mapping algorithms based on com-
putational intelligence, e.g., genetic algorithms [18], differen-
tial evolution [19], artificial immune systems [20], multiagent
systems [21], and particle swarm optimization [22], have been
successfully applied for remote sensing imagery. In addition,
Markov random fields (MRFs) [23]–[25], geostatistical meth-
ods [26]–[28], geometric subpixel mapping algorithm [29], and
interpolation-based methods [30] have also been proposed.

Most of the aforementioned methods are based on the spa-
tial dependence assumption [31], in which observations close
together are more alike than those further apart, where this
assumption is fulfilled on the condition that the intrinsic scale
of the spatial variation in each land-cover class is not smaller
than the sampling scale imposed by the image pixels [7]. Al-
though the MRF models [23]–[25] and geostatistics [26]–[28]
can be extended to incorporate various spatial patterns into
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the subpixel mapping, most of the aforementioned methods
do not always truly reflect the spatial pattern of subpixels in
real applications. In fact, subpixel mapping can be recognized
as an inverse or ill-posed problem which reconstructs a fine-
resolution map from a series of low-resolution abundance maps
[32]. Consequently, a regularized method based on a maximum
a posteriori (MAP) model has been proposed to solve the ill-
posed subpixel mapping problem, due to the advantages of
expansibility and the ease of adding prior information [33], in
which it can be applied to describe the relationship between
the abundance map and the spatial distribution image of the
subpixels, and the MAP algorithm can obtain the final result of
the high-resolution (HR) distribution image. However, multiple
shifted images are required in the algorithm proposed in [33],
and the regularization parameter needs to be defined in advance,
which often cannot be achieved in real applications. In addition,
as in most of the traditional methods, the abundance map
of the different classes utilized in the previous MAP-based
subpixel mapping algorithm [33] is obtained by downsampling
a classification image without spectral unmixing errors, and it
is still difficult to process a real remote sensing image [19].

To solve these problems and improve the subpixel mapping
accuracy for real applications, an adaptive subpixel mapping
method based on a MAP model and a winner-take-all class
determination strategy (AMCDSM) is proposed for hyperspec-
tral remote sensing images. In AMCDSM, the MAP model
is utilized to solve the subpixel mapping problem for hyper-
spectral remote sensing images, in which the ill-posed subpixel
mapping problem is transformed to be well-posed. Differing
from the user-defined parameter setting in MAP subpixel map-
ping with multiple shifted hyperspectral images (MMSSM)
[33], AMCDSM with a single image can adaptively obtain the
regularization parameter. In addition, to better simulate a real
scene, the input abundance images are obtained by unmixing
the downsampled original image in AMCDSM, not by down-
sampling a classification image, as in [33]. The AMCDSM
method can adaptively reduce the influence of the spectral
unmixing errors by adding the prior information of the spatial
pattern as a constraint in the MAP model and winner-take-all
strategy as follows.

1) Spatial regularization constraint. In the proposed AM-
CDSM framework, the subpixel mapping problem can
be transformed into a regularization problem, and the
MAP model is applied to regularize the subpixel mapping
problem by reconstructing a classification map with a
higher resolution from the abundance images with a lower
resolution. In this paper, three prior models, namely,
Laplacian [34], total variation (TV) [35], and bilateral TV
(BTV) [36], are applied, respectively. The spatial regu-
larization constraint of the MAP model attains a smooth
solution and effectively reduces the noise problem.

2) Self-adaptive regularization parameter control. The regu-
larization parameter is a tradeoff between the data fidelity
and the prior item, and it controls the balance between
the fidelity of the data and the smoothness of the so-
lution. To improve the adaptability of AMCDSM, the
regularization parameter is adaptively updated based on

different abundance images to find the optimal solution.
An adaptive parameter control method [37] is applied in
the MAP-based subpixel mapping model, with three prior
regularization models, to select the optimal regularization
parameter adaptively, accurately, and efficiently.

3) Winner-take-all class determination strategy. In
AMCDSM, to better avoid the impact of the spectral
unmixing errors, a winner-take-all class determination
strategy is utilized, taking into account the spatial
information between subpixels, which can produce
a smooth result. The MAP result represents the HR
MAP image for the different classes. According to the
winner-take-all strategy, the subpixel belongs to the class
with the maximum value.

The AMCDSM method was tested and compared with the
traditional algorithms, using a simulated hyperspectral image,
three synthetic hyperspectral images, and a real Nuance hy-
perspectral image. The experimental results demonstrate that
the proposed model can adaptively obtain a better result and
a higher subpixel mapping accuracy for hyperspectral remote
sensing imagery.

The rest of this paper is organized as follows. Section II
presents the necessary background information about the sub-
pixel mapping problem. In Section III, the proposed adaptive
subpixel mapping method based on a MAP model and a winner-
take-all class determination strategy (AMCDSM) is described
in detail. Section IV describes the experimental results and
analyses. A sensitivity analysis is also provided in this section.
Finally, the conclusion is provided in Section V.

II. BACKGROUND

A. Basic Principles of Subpixel Mapping

Subpixel mapping techniques aim to determine the optimal
distribution of subpixels of the different land-cover classes
within a pixel, based on the fraction images. The fractions
of each category can be obtained by a spectral unmixing
technique [38]. Subpixel mapping can be achieved by using
spatial dependence assumptions, and it was first proposed by
Atkinson in 1997, inspired by Tobler’s first law [39]. This refers
to the tendency for spatially proximate observations of a given
property to be more alike than more distant observations [6].
Subpixel mapping can transform the fraction image into a map
of suitable subpixel locations for the different classes within
a pixel. Each pixel can be divided into a number of subpixels
during this transformation, according to the predefined scale S
and the abundances of the fraction image.

Fig. 1 shows the basic principle of subpixel mapping and
describes a simple example with three classes. As shown in
Fig. 1(a), the pictures of the trees represent three different
classes, corresponding to Fig. 1(b)–(d), and the three values
represent the fractions of the three different categories, corre-
sponding to the central pixel (mixed pixel) in Fig. 1(b). The
fractions of the three different categories can be obtained by
spectral unmixing, and the values in Fig. 1(b) represent the
fractions of each pixel. In Fig. 1(b), each pixel is divided into
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Fig. 1. Example of subpixel mapping (3 × 3 coarse pixels, S = 4, and 3
classes). (a) Original image and the fractions of the central pixel in (b). (b)
Fraction image. (c) Possible distribution. (d) Another possible distribution.

16 (4 × 4) subpixels, with the assumption that the scale S is 4,
and the red, green, and blue squares represent the pure pixels,
while the white squares represent the mixed pixels of different
classes, respectively. In addition, the values in red, green, and
blue colors represent the fractions of land-cover classes 1, 2,
and 3, respectively; for example, 0.5 in blue means that there
are 8 (4× 4× 0.5) subpixels belonging to class 3. Fig. 1(c)
and (d) illustrates two possible distributions of the subpixels.
According to the assumption of spatial dependence, the former
is superior to the latter.

B. Construction of the Subpixel Mapping Observation Model

In this paper, the subpixel mapping problem is transformed
into a regularization problem, and the MAP model is applied
to regularize the subpixel mapping problem to be well-posed.
The MAP model can obtain the optimal result for the HR
pixels (subpixels). Meanwhile, the MAP result represents the
HR MAP image for the different classes. The MAP model, as
mentioned before, has the advantages of expansibility and the
ease of adding prior information and can be used to solve the
subpixel mapping problem.

In order to build the subpixel mapping observation model,
the impact of the downsampling matrix is considered. The
purpose of subpixel mapping is to convert the low-resolution
fraction (LRF) images to an HR classification (HRC) map by
looking for the optimal distribution of objects at the subpixel
scale. For different fraction images of different classes, the
final result is the distribution of each class in the HRC image.
Thus, the observation model can be considered as shown in
Fig. 2, where yc is the fraction image of class c and xc is the
result of the subpixel mapping on the corresponding central
pixel in green color. The subpixel mapping scale is set to be
3. The coordinate system is shown in Fig. 2, where the red
color represents the coordinates of each pixel or subpixel. In
addition, the coordinate values of each subpixel shown in green

Fig. 2. Observation model of subpixel mapping. (a) yc, the fraction image of
class c. (b) xc, the result of the subpixel mapping on the central pixel.

color in Fig. 2(b) represent the corresponding central pixel in
green color in Fig. 2(a), and the coordinates of Fig. 2(a) and (b)
are unified into the same coordinate system. Because this is a
single-class mapping problem, yc is an image of value 0–1, and
a value of 1 for the subpixel means that it belongs to category
c. The mapping model is shown in
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where yc(1, 1) is the fraction value of the pixel in coordinate
(1,1), i.e., the central pixel in Fig. 2(a). xc(3, 3), xc(3, 4),
xc(3, 5), xc(4, 3), . . . , xc(5, 5) represent the different subpixel
values in the mapping result. The coefficient 1/9 is related to
the reconstruction scale. Based on this method, the observation
model can be constructed for each pixel in the LRF image; then,
a series of observation equations can be created. Then, for each
category, the observation model between the fraction images
and the subpixel result can be constructed

yc = Dxc + nc (2)

where D is the downsampling matrix, which is related to the
reconstruction scale. yc is the fraction image of class c, in which
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the values are 0–1. xc is the result of the subpixel mapping on
class c, which can take on a value between 0 and 1, and nc is the
additive noise. In addition, c represents the different categories.

III. ADAPTIVE SUBPIXEL MAPPING METHOD BASED

ON A MAP MODEL AND A WINNER-TAKE-ALL

CLASS DETERMINATION STRATEGY

In this paper, an adaptive subpixel mapping method based on
a MAP model and a winner-take-all class determination strat-
egy (AMCDSM) is proposed for hyperspectral remote sensing
imagery. The subpixel mapping problem can be formulated as
an ill-posed problem which does not have a unique number
of solutions. In AMCDSM, the ill-posed subpixel mapping
problem is transformed into a regularization problem. The
MAP model with spatial prior information, e.g., Laplacian, TV,
and BTV prior models, is designed to build the HR subpixel
mapping results, using a series of LRF images, based on the
advantage of a MAP model, i.e., the unique solution, expansi-
bility, and ease of adding prior information. By incorporating
the spatial distribution prior into the subpixel mapping, this can
better reduce the spectral unmixing errors. The regularization
parameter can be obtained using an adaptive method. In the
proposed method, the LRF image can be adaptively converted
to an HRC map. Subsequently, the winner-take-all strategy is
utilized to obtain the final subpixel mapping result.

AMCDSM consists of the following steps.

A. MAP-Based Subpixel Mapping Observation Model

In this paper, a MAP method is utilized to regularize the
subpixel mapping problem to be well-posed by adding three
prior models, i.e., Laplacian, TV, and BTV. Based on the
mapping model in (2), the MAP approach seeks the x̂c

MAP

to estimate xc as (3), for which the a posteriori probability
Pr(xc|yc) is the maximum

x̂c
MAP = argmax {Pr(xc|yc)} . (3)

Applying Bayes’ rule

x̂c
MAP = argmax

{
Pr(yc|xc) Pr(xc)

Pr(yc)

}
. (4)

As Pr(yc) is a constant and has no effect on the results, it can
be removed

x̂c
MAP = argmax {Pr(yc|xc) Pr(xc)} . (5)

Applying the monotonic logarithm function to (5), it can then
be shown as

x̂c
MAP = argmax {log Pr(yc|xc) + log Pr(xc)} (6)

where Pr(yc|xc) is the likelihood function of the LRF image
for class c and Pr(xc) is the prior density of the image xc.

Assuming that the image noise is Gaussian noise with zero
mean and the same variance σ, Pr(yc|xc) can be shown as

Pr(yc|xc) =
∏
∀x,y

1

σ
√
2π

exp

(
− (ŷc − yc)2

2σ2

)
. (7)

While the prior Pr(xc) is subjected to the Gibbs form

Pr(xc) =
1

ρ
exp

(
− 1

β
U(xc)

)
(8)

where ρ is a constant, β is a control parameter, and U(xc) is the
energy function.

Substituting (7) and (8) in (6) yields

x̂c
MAP = argmax

{
log

(σ
√
2π)−N

ρ

−
∑ (ŷc − yc)2

2σ2
− 1

β
U(xc)

}
. (9)

The first term on the right of the equation is a constant, which
can be directly eliminated, and the remaining two negative
terms can be transferred to positive ones; thus, the maximiza-
tion problem is transformed into the following minimization
problem:

x̂c
MAP = argmin

{∑
(ŷc − yc)2 +

2σ2

β
U(xc)

}
. (10)

Assuming that λ = 2σ2/β, representing the regularization
parameter, we then substitute (2) into (10)

x̂c
MAP = argmin

{
‖yc −Dxc‖2 + λU(xc)

}
. (11)

In this equation, the first term is the data fidelity term,
which constrains the numerical relationship between the HR
distribution image and the LR fraction image, and the second
term is a prior term, which describes the spatial distribution
pattern of the HR image. λ is the weight or regularization
parameter used to control the balance of the data fidelity term
and the prior term.

B. Preprocessing in AMCDSM

To simulate a real application, the input synthetic images are
degraded using ENVI software [40] at a suitable scale so that
the downsampled original images can be obtained. A spectral
unmixing method is then utilized to obtain the abundance
fraction image of each class or endmember of the original
input data.

The nearest neighbor interpolation method [41] is applied to
the LRF image to obtain the initial HR distribution image. As
the degradation scale is known and the low-resolution images
and the initial HR image have been obtained, the observation
model for the subpixel mapping can be constructed using (2).

C. Adaptive MAP Model Solution

As the observation model of the subpixel mapping has been
constructed, AMCDSM can solve the problem according to the
following steps.

Step 1—Adaptive Regularization Parameter Selection: In
(11), the regularization parameter λ controls the balance be-
tween the fidelity term ‖y −Dx‖2 and the prior term U(x).
If the parameter is too small, the noise problem cannot be
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effectively solved. Alternatively, if the parameter is too large,
the result will be too smooth, and there will be a loss of details.
Consequently, the selection of the regularization parameter is
critical for the subpixel mapping result. In the conventional
algorithms, the regularization parameter is chosen as a fixed
numerical value from a set of candidate values. The optimal
result is then selected from the candidate values by comparing
all of the results. Choosing an optimal parameter is particularly
difficult because the regularization parameter is decided by the
prior information. In most applications, an accurate estimation
of the prior information is difficult to obtain. In addition, the
manually defined parameter method is complicated and time-
consuming and is prone to missing the optimal solution.

To solve the aforementioned problems, an adaptive parame-
ter selection method is proposed. In the adaptive method, the
regularization parameter is estimated at the same time as the
iteration when obtaining the HR distribution map. The method
makes full use of the iterative intermediate reconstruction infor-
mation to update the parameter λ. The newly acquired image is
applied to the next iteration to obtain a new λ, and the optimal
solution is eventually acquired.

The following properties of λ are incorporated in the pro-
posed algorithm [37].

1) λ > 0. As is shown in the regularization principle, a
regularization parameter of less than zero is meaningless;
it must be larger than zero.

2) λ is proportional to ‖y −Dx‖2. As the value of ‖y −
Dx‖2 increases, the noise contained in the model en-
larges, and it requires a larger λ to regularize the problem
and eliminate the impact of noise on the results. Conse-
quently, λ is proportional to ‖y −Dx‖2.

3) λ is inversely proportional to U(x). The edge and texture
details of the image will be more abundant as the value
of U(x) increases. To avoid the oversmoothing phe-
nomenon, a smaller regularization parameter is selected.
Therefore, λ is inversely proportional to U(x).

To satisfy the aforementioned conditions, the proposed regu-
larization function can be described as

λk+1 = ln

(
μ
‖y −Dxk‖2

U(x) + r
+ 1

)
(12)

where λk+1 is the regularization parameter of the k + 1 itera-
tion; xk is the subpixel reconstruction map obtained in the kth
iteration; U(x) is the prior model, which is presented in the next
part; r is the control parameter, which prevents the denominator
from being zero; and μ is the modified factor of λ, which can
select a fixed value.

Step 2—The Solution of the Spatial Regularization Terms:
The prior model U(xc) plays an important role in the proposed
method. It can regularize the ill-posed problem to obtain a sta-
ble unique solution [42]. Many different prior models have been
proposed in recent years, such as the Gaussian MRF model
[43], the Huber-MRF model [44], the weighted-MRF model
[45], the sparse directional regularization [46], the Laplacian
model [34], the TV model [35], and the BTV model [36]. In
AMCDSM, the prior model is assumed to be the same for each
category, and Laplacian, TV, and BTV prior models are used to

test the performance of the proposed method. The three prior
models are described as follows.

a) Laplacian prior model: The Laplacian prior model is
derived from the Tikhonov regularization method. It is a 2-D
Laplacian matrix which can put a constraint on the high-
frequency component of an ill-posed problem so as to provide a
smooth solution to the problem. The energy function is usually
defined as

U(xc) = ‖Qxc‖22 0 ≤ xc ≤ 1 (13)

where Q is the Laplacian matrix.
b) TV prior model: The TV prior model has the advan-

tage of being able to better maintain the edges and detailed
information of the image and can be represented as

U(xc) =
∑
i

∑
j

√
|∇xc

h|
2 + |∇xc

v|2 (14)

where ∇xc
h and ∇xc

v are linear operators representing the
gradient along the horizontal and vertical directions of the
image xc, which can be computed as

∇xc
h =xc[i+ 1, j]− xc[i, j]

∇xc
v =xc[i, j + 1]− xc[i, j] 0 ≤ xc ≤ 1. (15)

c) BTV prior model: The BTV prior model is derived
from the TV prior by adding a bilateral filter. The l1 form of TV
is a special case of BTV. The BTV prior is better at preserving
the edges of the image and is computationally efficient to
realize. The expression of BTV can be shown as [33], [35]

U(xc)=
P∑

l=−P

P∑
m=0

α|m|+|l|∥∥xc−Sl
hS

m
v xc
∥∥
1
0 ≤ xc ≤ 1 (16)

where matrices Sl
h and Sm

v shift the image xc by l and m
pixels horizontally and vertically, respectively. The parameter
α, 0 < α < 1, is the scale weighting parameter and can be
used to give a spatially decaying effect to the summation of
the regularization terms [36].

After the prior model and the adaptive regularization param-
eter are determined, the MAP iteration result for each class can
be obtained by minimizing the following objective function:

E(xc) = ‖yc −Dxc‖2 + λU(xc). (17)

In order to obtain the minimized value of (17), the gradient
descent [34] method is utilized. Differentiating (17) with re-
spect to xc, we have

∇E(xc) = −2DT (yc −Dxc) + λ∇U(xc) (18)

where ∇U(xc) can be calculated as

Laplacian : ∇U(xc) = 2QTQxc (19)

TV : ∇U(xc) =
∑
i

∑
j

∇ ·

⎛
⎝ [∇xc

h ∇xc
v]

T√
|∇xc

h|
2 + |∇xc

v|2 + β

⎞
⎠

(20)
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Fig. 3. Winner-take-all class determination strategy of subpixel mapping.

BTV : ∇U(xc) =

P∑
l=−P

P∑
m=0

α|m|+|l| [I − (Sl
h)

T (Sm
v )T
]

× sign
(
xc − Sl

hS
m
v xc
)
. (21)

In these equations, ∇ · () represents the divergence operator,
and β is a small positive parameter which ensures the differen-
tiability of the equation. (Sl

h)
T

and (Sm
v )T are the transposes

of Sl
h and Sm

v , and they play a role in shifting the image in the
opposite direction to Sl

h and Sm
v .

Due to the influence of the singular matrix and the large
computation time required, the MAP model can be solved by
an iterative computation sequence. The iteration equation can
be displayed as

x�c
n+1 = x�c

n + 2DT (Dxc − yc) + λ∇U(x�c). (22)

A fixed iteration number is chosen as the iteration termina-
tion condition.

D. Winner-Take-All Class Determination Strategy

In the proposed method, the original image downsampling
and spectral unmixing are used to obtain the abundance maps
of the different classes [47]–[49]. This process is influenced by
the spectral unmixing errors. If, when generating the subpixel
mapping result, the integration of the HR image is in strict ac-
cordance with the abundance fractions, the spatial information
between subpixels will be lost. Hence, a winner-take-all class
determination strategy is proposed to solve the problem.

In the MAP iteration, all of the HR results xc for each class
c are obtained and integrated to acquire the HRC image x.
Assuming that a coarse pixel is divided into S× S subpixels
in xc, then every pixel value should be normalized to [0, 1]
because the value represents the fraction of a subpixel of a
certain class c. Assuming that the class of a subpixel is z, it
must satisfy the condition that xz = max{xc|c = 1, 2, . . . , C},
where

∑C
c=1 x

c = 1 and C is the number of classes. The sub-
pixel mapping result can be obtained by utilizing this winner-
take-all class determination strategy. The process is described
in Fig. 3. As is shown in Fig. 3, A, B, and C represent three
classes, in red, green, and blue colors, respectively. In addition,

the values are the MAP result of each subpixel, representing
the HR distribution information, and the scale is 2. According
to the winner-take-all strategy, the values (which represent the
probabilities of the subpixels belonging to a certain class) of
each pixel for every class in the same position need to be
compared, such as 0.64 for class A, 0.12 for class B, and 0.24
for class C. Here, the maximum value is 0.64 for class A, so the
subpixels in the left corner belong to class A.

All of the processes are shown as a flowchart of AMCDSM
in Fig. 4. As shown in Fig. 4, the input fraction images are
obtained by unmixing the LR image (which can be obtained
by downsampling or collected by the original LR image), to
which the probabilistic support vector machine (P-SVM) [49]
and fully constrained least squares (FCLS) spectral unmixing
methods are applied. The fraction images are applied to the
MAP model to acquire the HR MAP result. Finally, the subpixel
mapping result is obtained by utilizing the winner-take-all class
determination strategy.

IV. EXPERIMENTS AND ANALYSES

One simulated image, three synthetic images, and one
real image were used to test the AMCDSM algorithm with
Laplacian, TV, and BTV prior models, namely, AMCDSM-
L, AMCDSM-TV, and AMCDSM-BTV. These methods were
compared with the traditional subpixel mapping methods
of nearest neighbor interpolation based subpixel mapping
(NNISM), subpixel mapping based on a spatial attraction
model (SASM) [16], pixel-swapping subpixel mapping al-
gorithm (PSSM) [17], BP neural network subpixel mapping
method (BPSM) [12], [13], subpixel mapping based on a ge-
netic algorithm (GASM) [18], and geometric subpixel mapping
algorithm (GSM) [29].

A. Data Preparation and Accuracy Assessment

In the experiments, the proposed algorithm should ideally
be applied on fraction images at a certain scale and compared
with the results of a hard classification at a finer resolution. To
avoid the uncertainty inherent in real imagery that is caused
by the sensor point spread function, atmospheric and geometric
effects, and classification or spectral unmixing errors [18],
simulated and synthetic images were used in the first four exper-
iments. The hard classification image obtained by the classifier
was regarded as the reference image. The input abundance
fraction images with a coarser scale were obtained by unmixing
the downsampled original hyperspectral remote sensing data, to
which the P-SVM [49] and FCLS spectral unmixing methods
were applied. Simulated and synthetic imageries have the ad-
vantage of lacking coregistration errors between the lower and
higher resolution images. Consequently, the subpixel mapping
results of the simulated and synthetic images can better reflect
the performance of the proposed methodology. For these simu-
lated and synthetic images, the scale factor was set to 4.

Although simulated and synthetic images can avoid the errors
of coregistration, our current study also aims to apply the
subpixel mapping technique to real imagery. Therefore, real
imagery obtained from a Nuance hyperspectral imaging camera
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Fig. 4. Flowchart of the adaptive subpixel mapping method based on a MAP model and class determination strategy.

Fig. 5. Experimental process of the subpixel mapping algorithm.

was utilized to test the performance of the subpixel mapping
algorithm.

The experimental process of the subpixel mapping algorithm
is shown in Fig. 5. As shown in Fig. 5, for the simulated
and synthetic image experiments, the downsampled image was
obtained by downsampling the original image, given a fixed
scale. FCLS and P-SVM were then utilized to acquire the
fraction images of the different classes. The adaptive MAP-
based subpixel mapping algorithm was then used to obtain
the final subpixel mapping result. An accuracy evaluation was
undertaken by making a comparison with the classification
map obtained by classifying the original image. Furthermore,
for the real image experiment, the LR image was obtained by
the use of a Nuance NIR imaging spectrometer, and then, the
spectral unmixing method was applied to obtain the fraction

images. Finally, the subpixel mapping result was acquired using
the adaptive MAP-based method. An accuracy evaluation was
then obtained by making a comparison with the real reference
ground truth classification map, which was obtained by a digital
camera for the same area as the LR image.

As mentioned before, the accuracy was measured by compar-
ing the results of the subpixel mapping with the reference clas-
sification map. Unlike the simulated experiments, more error
sources were introduced in the original downsampling method,
including the downsampling errors, the spectral unmixing error
of the LRF image, the error of the subpixel mapping methods,
and the registration error of the LRF image and the HRC map.
Two accuracy evaluation indices, the overall accuracy (OA)
and kappa coefficient, were used to test the subpixel mapping
accuracy.
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Fig. 6. Subpixel mapping results for the simulated hyperspectral data. (a) Original simulated hyperspectral image. (b) Reference classification map. (c) NNISM.
(d) SASM. (e) PSSM. (f) BPSM. (g) GASM. (h) GSM. (i) AMCDSM-L. (j) AMCDSM-TV. (k) AMCDSM-BTV.

TABLE I
ACCURACY OF THE CLASSIFICATION RESULTS OF THE DIFFERENT METHODS FOR THE SIMULATED DATA

B. Experiment I—Simulated Image

In this experiment, a simulated image with 50 bands (400 ×
400 pixels), created by using the USGS spectral library, was
utilized to test the proposed algorithm. This image contains four
land-cover classes—water, tree, agricultural field, and impervi-
ous layer (e.g., building and road)—as shown in Fig. 6(a).

A minimum-distance hard classification algorithm was ap-
plied to this simulated image to obtain the reference classifica-
tion image, which is shown in Fig. 6(b). Fig. 6(c)–(k) shows
the subpixel mapping results obtained by the NNISM, SASM,
PSSM, BPSM, GSM, and proposed AMCDSM-L, AMCDSM-
TV, and AMCDSM-BTV methods, respectively.

In this experiment, AMCDSM adaptively determined the
regularization parameter, as described in Section III-C. As
can be seen in Fig. 6, it can be observed that AMCDSM, as
presented in Fig. 6(i)–(k), shows better subpixel mapping re-
sults than the other algorithms and adaptively obtains smoother
visual results for all of the classes, using the spectral unmixing
information while disregarding the abundance constraint. Ser-
rated edges exist in the results generated by the traditional
methods, and more subpixels are allocated to incorrect posi-
tions, as can be seen in Fig. 6(c)–(h). It is also worth noting
that AMCDSM obtains better subpixel mapping results for the

two ridges of the field in the middle of the results than the other
subpixel mapping algorithms.

For a more detailed verification of the results, the subpixel
mapping results were compared with the hard classification re-
sult, and the accuracy of the results was assessed quantitatively,
using OA and kappa, as shown in Table I. From Table I, we can
see that the proposed method performs better and exhibits the
highest accuracy values. GSM has the lowest accuracy because
of the oversmoothing in the image. GASM is an optimization
algorithm, and it can obtain a better subpixel mapping result by
the use of evolution operators such as crossover and mutation.
AMCDSM, as a novel subpixel mapping algorithm, has some
major differences with GASM, e.g., in AMCDSM, prior models
are used as the original input information, thus obtaining a bet-
ter result. The OA values of AMCDSM-L, AMCDSM-TV, and
AMCDSM-BTV are equal to 94.73%, 94.68%, and 94.88%,
respectively, which is an improvement in the subpixel mapping
accuracies of 2.55%, 2.68%, and 2.70% when compared with
the most accurate traditional method. For the kappa index,
the accuracies are 0.9217, 0.9237, and 0.9238, which is an
improvement in the subpixel mapping accuracies of 0.0377,
0.0397, and 0.0398, respectively, when compared with the
most accurate traditional method. Overall, the AMCDSM-BTV
method obtains the best accuracy for this simulated data. The
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Fig. 7. Subpixel mapping results for the Washington DC image when using P-SVM for spectral unmixing. (a) Original hyperspectral image. (b) Reference
classification map. (c) NNISM. (d) SASM. (e) PSSM. (f) BPSM. (g) GASM. (h) GSM. (i) AMCDSM-L. (j) AMCDSM-TV. (k) AMCDSM-BTV.

reason for this is that the BTV prior is derived from the TV prior
by adding a bilateral filter, and it has the advantages of edge
preservation and being computationally cheap to implement.
The performance of AMCDSM-TV is similar to AMCDSM-
BTV, owing to its ability to effectively preserve the edges and
detailed information, while AMCDSM-L gives the worst result,
compared with the other two priors, because of its high-pass
operation and the smooth solution.

C. Experiment II—Synthetic Images

Three synthetic hyperspectral remote sensing images were
used to test the performance of the proposed subpixel mapping
algorithm in this experiment. Synthetic images can avoid the
registration error between the low-resolution and HR images.
Meanwhile, using synthetic images can also avoid the uncer-
tainty inherent in real imagery that is caused by the sensor
point spread function, atmospheric and geometric effects, and
spectral unmixing or classification errors.

1) Synthetic Image—Washington DC HYDICE Image: In
this experiment, an image that is a part of the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) airborne hy-
perspectral data set from the Washington DC Mall was utilized
to test the proposed algorithm. This image has 191 bands, 300
lines, and 200 columns, and four categories of water, tree, road,
and bare soil, as shown in Fig. 7(a), and it was used as the orig-
inal image. Fig. 7(b) illustrates the reference image classified
by the support vector machine (SVM) method, implemented by
ENVI software [40]. The subpixel mapping scale was 4.

The subpixel mapping results of the different methods
are displayed in Fig. 7(c)–(k), which illustrate the subpixel
mapping results by the use of the NNISM, SASM, PSSM,
BPSM, GSM, and proposed AMCDSM-L, AMCDSM-TV, and
AMCDSM-BTV methods, respectively.

As can be seen in Fig. 7, a visual comparison suggests that
the proposed method is successful in adaptively utilizing the
fraction images obtained by the spectral unmixing to acquire
the optimal results while disregarding the abundance constraint.
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TABLE II
ACCURACY OF THE CLASSIFICATION RESULT OF THE DIFFERENT METHODS FOR THE WASHINGTON DC IMAGE

Fig. 8. Subpixel mapping results for the Xiaqiao image when using P-SVM for the spectral unmixing. (a) Original hyperspectral image. (b) Reference
classification map. (c) NNISM. (d) SASM. (e) PSSM. (f) BPSM. (g) GASM. (h) GSM. (i) AMCDSM-L. (j) AMCDSM-TV. (k) AMCDSM-BTV.

From the comparison between Fig. 7(b) and (c)–(k), it can be
seen that NNISM, SASM, PSSM, and BPSM do not provide
satisfactory visual results, as there are lots of noisy points,
and many subpixels of the images are allocated to incorrect
positions, while GASM, GSM, AMCDSM-L, AMCDSM-TV,
and AMCDSM-BTV obtain better results, being smoother and
having better visual results. In particular, some tiny features,
such as the boundary of the water at the bottom right of the
reference classification image for the Washington DC data set,
are not easily reconstructed using the traditional methods. How-
ever, the proposed method performs better by utilizing the adap-
tive MAP method while disregarding the abundance constraint.

For a more detailed verification of the results, a quantita-
tive comparison of the aforementioned algorithms is shown in
Table II. From Table II, we can conclude that the proposed
AMCDSM method leads to a better performance than the other
methods, and it improves the accuracy when compared with
the other methods. For instance, the accuracies of AMCDSM-
L, AMCDSM-TV, and AMCDSM-BTV are equal to 75.72%,
76.96%, and 77.18%, respectively, which is an improvement
in the subpixel mapping accuracies of about 3.03%, 4.27%,
and 4.49% when compared with the most accurate traditional
method of GSM. For the kappa index, the accuracies are
0.6576, 0.6733, and 0.6735, which is an improvement in the



ZHONG et al.: SUBPIXEL MAPPING METHOD BASED ON MAP MODEL AND CLASS DETERMINATION STRATEGY 1421

TABLE III
ACCURACY OF THE CLASSIFICATION RESULTS OF THE DIFFERENT METHODS FOR THE PHI XIAQIAO IMAGE

Fig. 9. Subpixel mapping results for the HYDICE urban image when using P-SVM for the spectral unmixing. (a) Original hyperspectral image. (b) Reference
classification map. (c) NNISM. (d) SASM. (e) PSSM. (f) BPSM. (g) GASM. (h) GSM. (i) AMCDSM-L. (j) AMCDSM-TV. (k) AMCDSM-BTV.

subpixel mapping accuracies of 0.0467, 0.0624, and 0.0626,
respectively, when compared with the most accurate traditional
method of GSM. As with the simulated image, the AMCDSM-
BTV method obtains the best accuracy. These experimental
results demonstrate that the proposed approach outperforms the
other algorithms for this data set.

2) Synthetic Image—Xiaqiao PHI Image: In this experi-
ment, the proposed algorithm was tested with another hyper-
spectral image, which is a part of a remote sensing image
collected with an airborne push-broom hyperspectral imager
(PHI) from the Xiaqiao test site, China. A total of 78 bands of
the PHI image (340 × 500 pixels) were used, and four classes
of road, corn/vegetables, bare soil/soil, and water characterize
this image, as shown in Fig. 8(a). Fig. 8(b) shows the reference
image obtained by the SVM method. Fig. 8(c)–(k) illustrates
the subpixel mapping results of the aforementioned methods.
In this experiment, the scale factor was 4.

As can be seen in Fig. 8, as there are large areas of
corn/vegetables, this image is not complex, and distinct differ-
ences between the classes can be observed. A very important
feature in Fig. 8 is the road, and a visual comparison of this
feature indicates that the proposed AMCDSM method obtains
better visual subpixel mapping results. The proposed method
is successful in adaptively utilizing the fraction images ob-

tained by the spectral unmixing to acquire the optimal results
while disregarding the abundance constraint. In order to better
test the algorithms, a quantitative comparison is provided in
Table III. Table III shows that the OA values of AMCDSM-
L, AMCDSM-TV, and AMCDSM-BTV are equal to 82.15%,
82.16%, and 82.89%, respectively, which is an improvement in
the subpixel mapping accuracies of 2.55%, 2.56%, and 3.29%
when compared with the most accurate traditional method of
GSM. The kappa values are 0.6688, 0.6684, and 0.6796 for
the proposed method with the three prior models, which is an
improvement in the accuracies of 0.0495, 0.0491, and 0.0603,
respectively, when compared with the GSM method. As with
the two previous images, the AMCDSM-BTV method obtains
the best accuracy. As a result, the same conclusion can be drawn
for the Xiaqiao data set, in that the proposed approach performs
better than the other algorithms.

3) Synthetic Image—HYDICE Urban Image: In this exper-
iment, a part of a HYDICE urban image was used. A total of
187 bands of the HYDICE image (300 × 300 pixels) were
used, which contained six classes of roof1, tree, concrete road,
roof2/shadow, grass, and asphalt road, as shown in Fig. 9(a).
The scale factor was 4. Fig. 9(b) shows the reference classifica-
tion data obtained by the SVM classifier. Fig. 9(c)–(k) displays
the subpixel mapping results of the aforementioned methods.
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TABLE IV
ACCURACY OF THE CLASSIFICATION RESULTS OF THE DIFFERENT METHODS FOR THE HYDICE URBAN IMAGE

Fig. 10. Subpixel mapping results for the Nuance hyperspectral image. (a) Base LR hyperspectral image. (b) HR color image. (c) Reference classification map
obtained by SVM. (d) NNISM. (e) SASM. (f) PSSM. (g) BPSM. (h) GASM. (i) GSM. (j) AMCDSM-L. (k) AMCDSM-TV. (l) AMCDSM-BTV.

As can be seen in Fig. 9 and Table IV, AMCDSM obtains
better results and the highest values of OA and kappa, which
are equal to 67.92%, 68.03%, 68.64%, 0.5936, 0.5947, and
0.6006, respectively, which is due to the adaptability, the prior
models, and the disregarding of the abundance constraint. The
visual comparison shows that the roof1 feature has been better
constructed than with the traditional methods. From the accu-
racy data presented in Table IV, we can clearly see that the
proposed AMCDSM method improves the subpixel mapping
performance when compared with the traditional methods.
Among all of the methods, the AMCDSM-BTV method obtains
the best accuracy. As this image has more categories than the
aforementioned three images, the accuracies of the subpixel
mapping results are a little lower than those for the previous
experiments, but a similar conclusion can be drawn, which
is that the proposed approach performs better than the other
algorithms for this data set.

D. Experiment III—Real Nuance Image

To further evaluate the effectiveness of the proposed algo-
rithm, an experiment with a real image was undertaken. This LR

hyperspectral image (50 × 50) was collected using a Nuance
NIR imaging spectrometer, while an HR color image (150 ×
150) was simultaneously obtained by a digital camera for the
same area. The scale factor here was 3. The image contained
three classes: withered vegetable, fresh vegetable, and back-
ground. The reference classification map was obtained from an
HR color image by the SVM classifier. Fig. 10(a)–(c) illustrates
the base LR hyperspectral image, the HR color image, and the
HR classification map, respectively. Fig. 10(d)–(l) shows the
subpixel mapping results. Among the subpixel mapping results,
the boundary of the image for GSM could not be handled
as the scale was three; therefore, the accuracy evaluation was
undertaken without the result from the edge.

Unlike the simulated image and the synthetic images, the real
image contained more error sources, such as the registration
error of the base LR image and the HR color image, the
unmixing error of the LR image, and the classification error of
the HR color image. Compared with the reference classification
map, as displayed in Fig. 10, the results of the proposed method
are again superior to the traditional methods. Unlike the other
methods, which are seriously affected by the spectral unmix-
ing error, AMCDSM overlooks the abundance constraint, thus
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TABLE V
ACCURACY OF THE CLASSIFICATION RESULTS OF THE DIFFERENT METHODS FOR THE NUANCE IMAGE

Fig. 11. Comparison of the proposed method with different prior models and regularization parameter values. (a) Simulated experiment. (b) Synthetic experiment
with the DC image. (c) Real data experiment with the Nuance image.

obtaining a better result. It is, however, difficult to reach
a balance between smoothing and detail preservation since
smoothing can restrain the error of the spectral unmixing while
eliminating the potential tiny features. Due to the scale being
three and the fact that GSM does not deal with the boundary
part, the accuracy is a little higher than the accuracies for the
other methods, except for the proposed method. Due to the
advantage of the MAP method, the proposed algorithm can
obtain a better accuracy than the other methods, as is shown
in Table V. The OA and kappa values of the AMCDSM-TV
method are, respectively, about 4.59% and 0.0706 higher than
the accuracy of the most accurate traditional method, GASM.

E. Sensitivity Analysis

As is known from (11) in Section III-A, the regularization
parameter λ plays an important role in the iterative process,
and it controls the balance between the data fidelity term and
the prior term. If the parameter is too small, the noise cannot

be smoothed; however, if the parameter is too large, the image
will become very blurred [42]. In order to test the performance
of the proposed algorithm, the results obtained by the adaptive
parameter are compared with the nonadaptive results of dif-
ferent values of the regularization parameter. The OA curves
of the different parameter values with three priors and the
adaptive results with three priors are plotted for the simulated
image, DC image, and Nuance image and are shown in Fig. 11.

To compare the AMCDSM method with the nonadaptive
MAP method, the best parameter λ value obtained in the
nonadaptive MAP method must first be found. This parameter
is not changed during the iterative process when using the
nonadaptive MAP method. It can be seen from Fig. 11 that a
series of regularization parameter values for the nonadaptive
MAP method was set to find the most suitable one. For the same
parameter values, the different prior models obtain different
accuracies; however, for the same prior model, if the parameter
values are different, the effect is not the same. As is shown,
for the nonadaptive MAP method, when the value of λ is
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small, the Laplacian prior gets the best accuracy. TV and BTV
obtain the best results as the value of λ increases, while the
Laplacian results decline to a steady state. Meanwhile, the
accuracies of the three prior models all decrease greatly if λ
exceeds a certain range. As was mentioned before and as is
shown in Fig. 11(a)–(c), the optimum λ is obtained by the
nonadaptive method, which is represented by the peak of the
line. As the estimated lambda values obtained by the proposed
adaptive method were updated in the iteration and the values
were unfixed, we only show the final estimated lambda values
in the iteration. As shown in Fig. 11(a)–(c), the estimated
values are represented by different points using different shapes
and colors and are denoted by the vertical lines. As shown in
Fig. 11(a)–(c), for the AMCDSM method, the estimated opti-
mum result, which was acquired adaptively, is almost the same
as the optimum nonadaptive result, and the estimated lambda
values are close to the manually selected ones; therefore, there
is no need to set lots of parameter values to choose the best
result. As can be seen in Fig. 11, the simulated image, the DC
image, and the Nuance image all show similar patterns.

Consequently, we can conclude that the AMCDSM method
is a feasible solution for subpixel mapping. It is easy to realize,
and the optimum regularization parameter value can be adjusted
in the iterative process.

V. CONCLUSION

In this paper, a novel adaptive subpixel mapping method
based on a MAP model and a winner-take-all class deter-
mination strategy, namely, AMCDSM, has been proposed to
adaptively deal with hyperspectral images by using original
image downsampling and spectral unmixing to meet with the
real situation. AMCDSM utilizes a MAP model, which has
the ability to regularize the ill-posed problem by adding prior
information to obtain a better subpixel mapping result. The
traditional subpixel mapping algorithms always utilize the frac-
tion image obtained by the classification image downsampling
method as the input information. In AMCDSM, the original
image downsampling and spectral unmixing results are applied
to acquire the subpixel mapping result. Since the determination
of the regularization parameter is very difficult, the traditional
methods usually set a series of values to find the best result.
In AMCDSM, an adaptive method is proposed to adaptively
choose the optimal result, which is time-saving, simple, and
efficient. As the spatial information between subpixels will be
lost if the abundance constraint is strictly obeyed, the winner-
take-all strategy chooses the largest value in the same position
to be a certain category, thus avoiding the aforementioned
problem. One simulated image, three synthetic images, and
one real image were used to test the AMCDSM method and
were compared with the traditional subpixel mapping methods.
To better simulate a real situation, the abundance maps were
acquired by the original image downsampling and spectral
unmixing. The experimental results show that the AMCDSM
algorithm consistently outperforms the previous subpixel map-
ping algorithms. In addition, the sensitivity analysis of the reg-
ularization parameter λ demonstrates that AMCDSM obtains
similar results to the optimal parameters of manual selection

and hence provides an effective subpixel mapping method for
hyperspectral remote sensing imagery.
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