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a b s t r a c t

Whereas the transform coding algorithms have been proved to be efficient and practical for grey-level
and color images compression, they could not directly deal with the hyperspectral images (HSI) by
simultaneously considering both the spatial and spectral domains of the data cube. The aim of this paper
is to present an HSI compression and reconstruction method based on the multi-dimensional or tensor
data processing approach. By representing the observed hyperspectral image cube to a 3-order-tensor,
we introduce a tensor decomposition technology to approximately decompose the original tensor data
into a core tensor multiplied by a factor matrix along each mode. Thus, the HSI is compressed to the core
tensor and could be reconstructed by the multi-linear projection via the factor matrices. Experimental
results on particular applications of hyperspectral remote sensing images such as unmixing and
detection suggest that the reconstructed data by the proposed approach significantly preserves the
HSI's data quality in several aspects.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Remotely sensed images, which are acquired by the airborne or
spaceborne sensors, have been extensively used in earth observa-
tion applications. Hyperspectral imaging sensors can collect an
image in which each pixel has the contiguous bands of spectra,
and these large number of spectral channels provide the oppor-
tunity for the detailed analysis of the land-cover materials [1], e.g.,
endmember extraction [2,3], spectral unmixing [4,5], target detec-
tion [6–8], image classification [9–11], and so on . However, as the
hyperspectral image (HSI) is intrinsically a data cube which has
two spatial dimensions (width and height) and a spectral dimen-
sion, numerous researches have indicated that the redundancy
from both inter-pixel and inter-band correlation is very high and
thus the data cube could be compressed by some algorithms
without a significant loss of the useful information for subsequent
HSI analysis [12,13].

Generally, image compression technologies can significantly reduce
the HSI volumes to a more manageable size for storage and commu-
nication. In the literature, most of the existing HSI compression

algorithms are transform coding based approaches, e.g., Set Partition-
ing in Hierarchical Trees (SPIHT) and Set Partitioned Embedded bloCK
(SPECK) algorithms [14], the progressive 3-D coding algorithm [15],
the 3-D reversible integer lapped transform [16], and the discrete
wavelet transform coupled with tucker decomposition [17], etc. Also
based on the wavelet transform, Du et al. proposed a series of works
on using JPEG 2000 ISO standard for HSI compression, the most
important of which are JPEG2000 and Principal Component Analysis
(PCA) based HSI compression methods [12,18,19]. As suggested in the
aforementioned papers, the transform coding has been proved effi-
cient and practical for HSI compression. However, most of the trans-
form coding related algorithms were originally designed to process
2-D grey-level images, and then extended to 3-D data cube without
the consideration of special characteristics of HSI, which might be
problematic when the subsequent image analysis is conducted on the
reconstructed HSI cube [12,20].

In this paper, we propose a method for compression of the HSIs in
a novel point of view, which is based on the multi-dimensional or
tensor data processing approach [21–25]. As indicated in some
previous works within the hyperspectral imaging area, an HSI data
can be intrinsically treated as a 3-order-tensor, by this way the data
structure of both the spatial and spectral domains is well preserved
[26,27]. For the task of HSI compression, by representing the observed
HSI data cube to a 3-order-tensor with two spatial modes and an
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additional spectral mode, we introduce a tensor decomposition
technology to decompose the original tensor into a core tensor with
same order while much lower dimensionality multiplied by a matrix
along each mode, under the umbrella of multi-linear algebra, i.e., the
algebra of tensors. Thus, the HSI is compressed to the core tensor, and
the reconstructed HSI is actually a low-rank tensor which could be
acquired by the multi-linear backward projection via the factor
matrices. HSI compression and reconstruction experiments on two
public data sets show that the proposed method not only obtains the
highest PSNR value, but also significantly preserves the HSI data
quality which is benefit for several subsequent image analysis
including the endmember extraction, spectral unmixing, and target
detection.

The remainder of this paper is organized as follows. In the
following section, we give a brief description of related tensor
algebra, and then presents the proposed HSI compression algo-
rithm in detail. After that, the experiments are reported in Section
3, followed by the conclusion.

2. The proposed HSI compression algorithm

The notations used in this paper are followed by convention in the
multi-linear algebra, e.g., vectors are denoted by lowercase boldface
and italic letters, such as x, matrices by uppercase boldface and italic,
such as U , and tensors by calligraphic letters, such as X . For a K-order-
tensor XARL1�L2�⋯�LK , where Li shows the size of this tensor in each
mode, and the elements of X are denoted with indices in lowercase
letters, i.e., X l1 ;l2 ;…;lK , in which each li addresses the i-mode of X , and
1r lirLi, iAð1;2;…;KÞ. Unfolding X along the i-mode is defined by
keeping the index li fixed and varying the other indices, the result of

which is denoted as X ðiÞARLi�∏ja iLj . The i-mode product of a tensor X
by a matrix UARJi�Li , is a tensor with entries ðX�iUÞl1 ;…;li� 1 ;ji ;liþ 1 ;…;

lK ¼∑liX l1 ;…;lKU ji ;li . The Frobenius norm of a tensor X is given by

JX J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑l1⋯∑lKX2

l1 ;l2 ;…;lK

q
, and the Euclidean distance between two

tensors X and Y could be measured by JX�Y J . For more detailed
information, refer to [21,28–30].

As discussed above, in order to preserve the most representa-
tive information of the HSI data, we denote the data cube as a 3-
order-tensor XARL1�L2�L3 , in which L1, L2, and L3 give the height,
width and spectral channels of HSI, respectively. Then, the com-
pressed tensor C (also known as the core tensor of X) can be
acquired by the following multi-linear projection:

C¼X�1U1�2U2�3U3 ð1Þ
in which U1ARJ1�L1 , U2ARJ2�L2 , and U3ARJ3�L3 are series of
projection matrices and JirLi, iAð1;2;3Þ. By this way, X is
compressed to CARJ1�J2�J3 with the rate of ∏3

i ¼ 1Ji=∏
3
i ¼ 1Li, and

the reconstructed tensor could be acquired by the following multi-
linear projection:

X̂ ¼ C�1U
T
1�2U

T
2�3U

T
3: ð2Þ

The reconstructed tensor X̂ given in (2) is in fact a low-rank
tensor, thus the reconstruction error E could be computed by

E ¼X�X̂ : ð3Þ
As an effective HSI compression algorithm, we expect that the
reconstructed tensor X̂ should be close to the original tensor data
X as much as possible. According to this aspect, the required
projection matrices U i, iA ð1;2;3Þ should be optimized by mini-
mizing the Euclidean distance between X and X̂ , which also could
be written as the Frobenius norm of E:
arg min

U1 ;U2 ;U3

‖X�X̂ ‖2 ¼ arg min
U1 ;U2 ;U3

‖E‖2: ð4Þ

By combining (1), (2) into (4), we have the following optimization
of the proposed HSI compression algorithm:

arg min
U1 ;U2 ;U3

‖X�X�1U
T
1U1�2U

T
2U2�3U

T
3U3‖2: ð5Þ

Eq. (5) presents the same form with a tensor decomposition
technology, i.e., the Tucker decomposition [30,31], which is a form
of higher-order PCA and aims to decompose a tensor into a core
tensor transformed by a factor matrix along each mode. Thus we
abbreviate the proposed method as “TenD” in the rest of this
paper. The objective function of (5) could be locally optimized by
alternating optimization. The basic idea of this solution comes
from the fact that any one of the projection matrix could be simply
acquired by an eigenvalue decomposition problem when the
remaining two matrices are fixed. So, after initializing U i,
iA ð1;2;3Þ, the optimal projection matrices along all modes can
be acquired iteratively.

Specifically, the projection matrices could be initialized as
either identity matrices or arbitrary columnly-orthogonal
matrices. In this paper, we suggest to use the higher-order SVD
(HOSVD) [30] to find a good starting point for an alternating
optimization. Then, the higher-order orthogonal iteration (HOOI)
[31] is used to optimize U i, iA ð1;2;3Þ in an iterative way. The
detailed procedure for solve Eq. (5) is given below.

Algorithm 1. Procedure to solve TenD.

Input: Input HSI data XARL1�L2�L3 and compressed
dimensionality in each mode J1, J2 and J3;
Initialize U i, iA ð1;2;3Þ using HOSVD;
repeat

� C¼X�2U2�3U3, let U1 be the J1 leading left singular
vectors of Cð1Þ;
� C¼X�1U1�3U3, let U2 be the J2 leading left singular

vectors of Cð2Þ;
� C¼X�1U1�2U2, let U3 be the J3 leading left singular

vectors of Cð3Þ;
until Convergence

Output: Projection matrices U1, U2 and U3 for HSI
compression.

It is worth noting that some representative HSI spectral
dimension reduction (DR) algorithms, e.g., PCA and maximum
noise fraction (MNF) [32,33], could also perform HSI compression
and reconstruction but only in the spectral domain. This branch of
approaches considers the HSI data as a set of spectral feature
vectors xiARL3 ∣i¼ ½1;…; L1L2� in which L3 gives the spectral chan-
nels and L1L2 is the number of pixels in HSI. Then, the DR
algorithm outputs the linear projection matrix UARd�L3 (drL3)
by some certain criterions, e.g., PCA finds the principal compo-
nents in accordance with the maximum variance of the data and
MNF transforms the principal components which are ranked by
SNR. Similar to tensor compression (1), the low-dimensional
feature representation yiARd (here the compression rate is d=L3)
is obtained by

yi ¼U � xi; i¼ ½1;…; L1L2� ð6Þ
and the reconstructed feature vector could be recovered by the
backward projection:

x̂i ¼UT � yi; i¼ ½1;…; L1L2�: ð7Þ
Obviously, Eqs. (6) and (7) consider the feature redundancy in

the spectral domain while ignore the cross-domain redundancy of
the input HSI data. Correspondingly, the proposed TenD algorithm
deals with the HSI data by simultaneously considering both the
spatial and spectral domains of the data cube, which can make
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Fig. 1. (a) AVIRIS data cube (bands 28, 19, and 10 for red, green, and blue, respectively); (b) MPSNR values with respect to various compression rates in AVIRIS data cube. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 2. About 18 endmembers extracted from the original AVIRIS data cube and the reconstructed data cube by three algorithms.
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sure that the significant data quality in HSI could be preserved as
complete as possible as shown in the following experimental
reports.

3. Experiments and analysis

In this section, two public benchmark HSIs are used to
demonstrate the superiority of the proposed TenD algorithm in
several aspects. Since the particular advantage of the TenD algo-
rithm lies in that it considers the hyperspectral image as a whole
3-order-tensor data rather than the series of vectors, therefore, we
compare it to PCA and MNF which consider the HSI data as a set of
spectral feature vectors and then perform the HSI compression
and reconstruction only in the spectral domain. The first dataset is
the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
Cuprite hyperspectral image, which had been extensively investi-
gated by researchers and actually serves as the standard data for
HSI endmember extraction and spectral unmixing. The second one
is a HyMap image provided by the Rochester Institute of Technol-
ogy (RIT) self-test project [34]. This dataset was particularly
designed for target detection and equipped with the exact loca-
tions and Spectral Library (SPL) files of all the desired targets.
Therefore, it is also one of the standard datasets for hyperspectral
target detection algorithms.

3.1. Performance on AVIRIS data set

The AVIRIS data cube is shown in Fig. 1(a), this data cube
includes 190 lines, 250 rows, and 182 spectral channels. In order to
comprehensively evaluate the HSI compression performance, we
show the reconstructed HSI quality respect to various compression
rates. In detail, we select d¼ ½3;6;9;12;15� in PCA and MNF to plot
Fig. 1(b) and the compression parameters J1, J2 and J3 in TenD are
set in line with the certain compression rate. The Mean Peak Signal
to Noise Ratio (MPSNR) value is introduced to measure the quality
of the reconstructed HSI by comparing it with the original HSI
data. Fig. 1(b) shows the MPSNR values regarding the various
compression rates by PCA, MNF and proposed TenD algorithms. It
is obvious that TenD algorithm achieves the best HSI reconstruct
quality in all of the compression rates.

We hereby use the AVIRIS data set to show the effect of the HSI
compression algorithms on endmember extraction and spectral
unmixing. In this experiment, the compression rate of all algo-
rithms is fixed at 0.049. Firstly, the endmembers extracted from
the original HSI data as well as their locations are recorded as the
reference. In this step, the number of endmembers is estimated as
18 by the HySime [35] algorithm while the endmembers are
extracted by the Vertex Component Analysis [36] algorithm. Then,
we compare the endmember pixels at the recorded locations of
the reconstructed HSIs with the reference, the detailed spectral
curves of 18 endmember pixels are plotted in Fig. 2. It is obvious
that the curves provided by TenD algorithm have the similar shape

to the reference curves in all of the sub-figures. The quantitative
comparison of the endmember extraction results are measured by
the spectral angle mapper (SAM), as given in Table 1, the proposed
TenD algorithm outperforms PCA and MNF in 14 endmembers of
all the 18 ones in the reference.

Finally, we use the endmembers in reference to perform
spectral unmixing of the original HSI cube and the reconstructed
cubes, by the Un-Constrained Least Squares (UCLS) abundance
estimation method. The Root Mean Squared Error (RMSE) is
adopted as the metric to compare the performance. As indicated
in Table 2, the proposed TenD algorithm performs better than PCA
and MNF.

3.2. Performance on HyMap data set

Fig. 3 shows the HyMap data cube of the RIT project, with a size
of 280�800�126. In the HyMap experiment, we also firstly show
MPSNR values of the reconstructive HSIs with respect to various
compression rates (see Fig. 4(a)). Since we experimentally observe
that this data cube can be compressed to some lower rates than
the AVIRIS data cube, we select d¼ ½3;6;9;12;15� in PCA and MNF
to plot Fig. 4(a) and the compression parameters J1, J2 and J3 in
TenD are set in line with the certain compression rate. Similar to
the technical indices reported in the previous subsection, we
observe that the proposed algorithm outperforms the comparison
approaches at all the compression rates.

The target detection is performed on both the original and
reconstructed HSIs by a famous hyperspectral detector, i.e., the
adaptive cosine estimator (ACE) [37]. The compressed rate is fixed
to even a little lower than the AVIRIS experiment (0.015). Accord-
ing to the RIT project [34,38], there are 7 target of interests in this

Table 1
SAM values between extracted endmembers in the original HSI and reconstructed data cubes.

ID 1# 2# 3# 4# 5# 6# 7# 8# 9#

PCA 0.0113 0.0162 0.0135 0.0261 0.0214 0.0122 0.0245 0.0158 0.0193
MNF 0.0174 0.0204 0.0142 0.0353 0.0245 0.0137 0.0286 0.0175 0.0209
TenD 0.0455 0.0126 0.0075 0.0156 0.0171 0.0080 0.0146 0.0126 0.0165

ID 10# 11# 12# 13# 14# 15# 16# 17# 18#

PCA 0.0168 0.0250 0.0148 0.0180 0.0081 0.0248 0.0223 0.0171 0.0121
MNF 0.0169 0.0267 0.0146 0.0184 0.0093 0.0272 0.0243 0.0164 0.0151
TenD 0.0285 0.0166 0.0096 0.0095 0.0088 0.0129 0.0137 0.0161 0.0136

Table 2
RMSE values of all algorithms in AVIRIS data cube.

PCA MNF TenD

RMSE 276.04 313.36 194.45

Fig. 3. HyMap data cube of the RIT project (bands 16, 8, and 1 for red, green, and
blue, respectively). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

L. Zhang et al. / Neurocomputing 147 (2015) 358–363 361



HSI scene, including 4 fabrics and 3 vehicles, the prior spectra of
which are obtained and preprocessed by the SPL files. In detail, the
SPL spectra are rescaled according to its reflectance factor of 100
and resampled according to the HSI wavelength, the resulting
spectra are shown in Fig. 4(b), and fed as the input of ACE. Since
the true locations of all targets are known, the detection perfor-
mance could be evaluated by the False Alarm Rate (FAR), which is
defined as the number of non-target pixels that have an ACE
output value equal to or higher than the true target pixel value,
divided by the total number of pixels in the HSI. It is evident from
Table 3 that the proposed algorithm gives a superior performance
for all the targets in the HyMap experiment, but only a little higher
than the original HSI by the FAR value.

4. Conclusion

This paper proposes an HSI compression and reconstruction
algorithm by the tensor data processing approach. Since the HSI
data is treated as a 3-order-tensor by which the spatial-spectral
structure could be preserved as much as possible, we introduce a
tensor decomposition technology to simultaneously project the
original tensor into a core tensor with much lower dimensionality
in each mode, by using the factor matrices, the HSI can be
reconstructed by a simply multi-linear backward projection. Com-
pared to the spectral DR based methods, the proposed TenD
algorithm can significantly preserve the HSI data quality and
present good performance in the following applications.
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PCA 2.14�10�1 2.26�10�1 2.24�10�1 2.91�10�1 1.57�10�1 1.05�10�1 2.07�10�1

MNF 2.31�10�1 3.92�10�1 2.63�10�1 3.62�10�1 1.21�10�1 3.21�10�2 1.74�10�1

TenD 3.13�10�3 9.67�10�3 1.65�10�2 7.82�10�2 5.62�10�2 2.46�10�2 9.01�10�2
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