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Abstract—Deep networks have achieved excellent performance
in learning representation from visual data. However, the super-
vised deep models like convolutional neural network require large
quantities of labeled data, which are very expensive to obtain. To
solve this problem, this paper proposes an unsupervised deep net-
work, called the stacked convolutional denoising auto-encoders,
which can map images to hierarchical representations without
any label information. The network, optimized by layer-wise
training, is constructed by stacking layers of denoising auto-
encoders in a convolutional way. In each layer, high dimensional
feature maps are generated by convolving features of the lower
layer with kernels learned by a denoising auto-encoder. The auto-
encoder is trained on patches extracted from feature maps in the
lower layer to learn robust feature detectors. To better train the
large network, a layer-wise whitening technique is introduced into
the model. Before each convolutional layer, a whitening layer
is embedded to sphere the input data. By layers of mapping,
raw images are transformed into high-level feature represen-
tations which would boost the performance of the subsequent
support vector machine classifier. The proposed algorithm is
evaluated by extensive experimentations and demonstrates supe-
rior classification performance to state-of-the-art unsupervised
networks.

Index Terms—Convolution, deep learning, denoising auto-
encoders, unsupervised learning.
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I. INTRODUCTION

FEATURE learning is an efficient way to discriminately
represent image data [1]–[5]. Shallow feature learning

algorithms such as bag of visual words [6] and spatial pyra-
mid matching [7] can learn determinative features (e.g., edges
and color) from images with large variation but belonging
to similar categories. When stacking shallow models into
deeper models in a proper way, more abstract features, such as
contours, which are combinations of low level features follow-
ing certain principles, are learned automatically [2], [8], [9].
One typical type of deep models is convolutional neural
network [10]–[12] (CNN). It is a hierarchal model that out-
performs most algorithms on visual recognition tasks. One
property that makes CNN work well is its deep structure,
which allows the model to learn layers of filters and transform
the input data to good representation [13]–[15], boosting the
performance of the subsequent classifier. The other property
is convolution [16] and pooling [17] structures. The convolu-
tion structure shares weights and keeps the relative location
of features, thus reserves spatial information of the input data.
However, deep CNNs usually have a huge number of param-
eters to train, which requires a tremendous amount of labeled
data and considerable expenditure of computing resource.

The other type of deep model is unsupervised deep net-
works, which attempt to learn deep representation from
the data itself without knowing its label. One typi-
cal unsupervised feature learning algorithm is stacked
auto-encoders (SAEs) [18]–[20]. It is a stack of the shal-
low auto-encoder model, which learns features by first
encoding the vector-form input data then reconstructing it.
Shin et al. [21] applied stacked sparse auto-encoders (SSAEs)
to medical image recognition and made notable promote
in recognition accuracy. Vincent et al. [22], [23] intro-
duced a novel type of auto-encoder called the denoising
auto-encoder (DAE), which corrupts the input with random
noise at the training stage to make the algorithm robust to data
with noise or large variation. And it stacks the DAEs into a
deep unsupervised network to learn deep representation [23].

Though the SAEs are capable to learn hierarchical fea-
tures from complicated visual data, they reshape the high
dimension input data into vectors due to the network struc-
tures, discarding the inherent structures. To solve this problem,
Masci et al. [24] proposed a kind of deep network called con-
volutional auto-encoders, which directly takes the 3-D image
data as the input and trains the auto-encoder convolutionally.
Adjacent convolutional auto-encoders are combined by the
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convolution and pooling operations. The convolutional ker-
nels are learned to convolve the input feature maps of each
layer into more abstract features. Compared to SAEs, the hier-
archical convolutional auto-encoders reserve more structural
information.

Besides auto-encoders, other types of unsupervised
deep networks with convolution structure have achieved
sound performance for learning representation in visual
tasks. Norouzi et al. [25] proposed stacked convolu-
tional restricted Boltzmann machines (RBMs), which trains
a convolutional RBM modified from the conventional
RBM (CRBM) [26], [27] to include spatial locality as well
as weight sharing and stacks the CRBM to construct deep
models. Lee et al. [28] proposed convolutional deep belief
network (CDBN), which replaces the RBM in each layer with
CRBM, and uses convolution structure to combine the lay-
ers to construct hierarchical models [29], [30]. Compared to
the traditional DBN [31], CDBN reserves information of local
relevance and improves the capability of feature representa-
tion. With the similar ideas, Zeiler et al. [32], [33] proposed
a deconvolutional network based on traditional sparse cod-
ing algorithm [34]. The deconvolutional network is based on
convolutional decomposition of input data under a sparsity
constraint. It is a modification of conventional sparse cod-
ing algorithm. Compared to sparse coding, the deconvolutional
network can learn richer feature sets and build mid-level rep-
resentations. Kavukcuoglu et al. [35] developed the stacked
convolutional sparse coding to make the inference procedure
faster for real-time applications.

While the convolutional deep models have been success-
fully applied to various areas, two problems prevent the further
development of these algorithms. One problem is that the
deep convolutional models are hard to train. When train-
ing the deep network convolutionally, such as CNN, CDBN,
the large network is hard to optimize, as the optimization
methods used in deep networks without convolution struc-
ture (we call them nonconvolution networks) such as SAEs
and deep belief networks do not fit properly on the deep net-
works with convolution structures. Some efficient optimization
and regularization techniques perform better on the noncon-
volution models, like sparse constraint on the response of the
auto-encoder. Though some regularization methods have been
proposed to optimize the deep CNN, they are not proved to
be suitable for the unsupervised networks.

The second problem comes from one of the intrinsic prop-
erties of a deep network—sensitiveness to the input. Large
networks are sensitive to small perturbance of the input
images, though they are capable to learn robust features. The
network may be misled to misclassify an image by a certain
imperceptible perturbation on the image [36]. So when there
is noise in the input data, or we have to deal with image sets
with large variation, features learned by current networks may
not be robust.

For the first problem, we use patch-wise training to opti-
mize the weights of an auto-encoder in place of convolutional
training. We first extract patches from the 3-D input images or
feature maps, then trains a basic auto-encoder without convo-
lution operation to learn weights. In this way, the optimization

methods like sparse regularization and whitening can be used
efficiently to improve the performance of feature learning and
obtain better weights. The weights are then reorganized to con-
volutional kernels. At the inference stage, we introduce the
convolution structure to the model. The convolutional kernels
are used to convolve the 3-D input data to more abstract 3-D
feature maps, thus still reserves local relevance. We still call
this structure the convolutional auto-encoder. Then the convo-
lutional auto-encoders are stacked to learn high-level feature
representation.

For the second problem, to wipe off the noise in the input
data as possible, we adopt the theory and network frame-
work of DAEs introduced in [22]. The DAE can automatically
denoise the input images to learn robust features. It has been
given thorough proof in theory and in practice [23], [37]. Our
improvement on the second problem mainly lies on that we use
DAEs to replace the conventional auto-encoders. At the infer-
ence stage, we stack the DAEs with convolution structure, then
construct the proposed model—stacked convolutional denois-
ing auto-encoder (SCDAE). Compared to the stacked DAEs,
our model transforms the vector-form layers to high dimen-
sional convolutional layers. The combination of DAE and
convolution structure forces our model to learn more robust
and abstract hierarchical features, which will help to improve
our model’s representation learning performance.

The proposed unsupervised deep network is optimized
through layer-wise training. To learn better convolutional ker-
nels for each layer, a whitening layer is embedded before each
convolutional layer. We call it the layer-wise whitening opti-
mization technique. Specifically, in the whitening layer, ZCA
whitening technique [38] is utilized to sphere the input fea-
tures, which can remove the correlations of features inside a
local area to allow the DAEs to learn better weights. Then the
processed data are sent to the convolutional layer. In addition,
dropout [39] is utilized in the hidden layer of the auto-encoders
to achieve model averaging.

In summary, the main contributions of this paper are that we
propose an unsupervised deep network, the SCDAEs, which
stacks DAEs in a convolutional way to generate a hierarchical
model. For better training performance, the parameters of the
DAE are optimized through patch-wise training. The SCDAE
model can learn robust and abstract hierarchical feature repre-
sentations from raw visual data in an unsupervised manner. To
better optimize the large number of parameters, the network
is trained with layer-wise whitening technique. Before each
convolutional layer, a whitening layer is embedded to sphere
the input feature maps.

The remainder of this paper is organized as follows. Related
work is introduced in Section II and details of the SCDAE
algorithm are provided in Section III. Experimental results and
analysis on five popular datasets are presented in Section IV,
followed by our main conclusions in Section V.

II. RELATED WORK

A. Auto-Encoder

The conventional auto-encoder is a three-layer symmetrical
neural network that constrains the output to be equal to the
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Fig. 1. Illustration of DAE with dropout. Neurons in gray denote the
corrupted input neural units.

input. Given an input vector x, the auto-encoder first maps
x into a latent representation y through a nonlinear map-
ping y = f(�1x + β1), Where �1 is a mapping matrix to
be learned, and β1 is a bias vector that controls the activa-
tions of the neural units. The feature representation y is then
mapped back to a reconstructed vector z via backward map-
ping z = g(�2y + β2). z is constrained to approximate the
original input x, i.e., x ≈ z. The construction error is defined
as the Euclidian distance between x and z. The parameters of
auto-encoder are optimized by minimizing the construct error.
The latent feature y mapped from x by well learned parameters
is the final representation of x.

B. Dropout

Dropout is a technique applied to the fully connected layers
to prevent overfitting. In each training iteration, each hidden
unit in a layer is randomly omitted from the network with a
certain probability, and in this way the hidden units do not rely
on other hidden units to change their states. Dropout is a model
averaging technique, since different networks are trained in
different training iterations.

III. STACKED CONVOLUTIONAL DENOISING

AUTO-ENCODER

A. Denoising Auto-Encoder With Dropout

In the training stage of the proposed network, convolutional
kernels of each layer are trained by DAE with dropout tech-
nique optimizing the large network. The DAE is a simple but
effective variant of the basic auto-encoder. The main idea of
this approach is to train an auto-encoder which could recon-
struct the input data from a corrupted version that has been
manually added with random noise. The optimized model
is then capable to automatically denoise the input data and
thus generates better feature representations for the subsequent
classification tasks.

The structure of the DAE with dropout is demonstrated in
Fig. 1. A DAE takes a vector x ∈ Rd as the input and corrupts
x into vector x̂ with a certain probability λ by means of a
stochastic mapping

x̂ ∼ D
(
x̂ | x, λ

)
. (1)

D is a type of distribution determined by the original distri-
bution of x and the type of random noise added to x. Then x̂ is

mapped to a latent vector representation y using a deterministic
function ϕ

y = ϕ
(
�x̂ + β

)
. (2)

When dropout technique is applied to the network to opti-
mize the training process, neural units in the hidden layers are
randomly omitted with a probability q. The representation y is
then transformed into a dropped representation ỹ by a scalar
product with a masking vector m. m ∼ Bernoulli(1 − q),
“.” denotes to scalar product

ỹ = m · y. (3)

Dropout technique is extremely helpful for the optimization
of large neural networks. Since the network is updated itera-
tively, a unique network is trained in each iteration as a result
of randomly dropping the neurons in the hidden layer. When
the training process converges, the network gets an average
representation of 2|m| networks, which greatly improves the
subsequent classification performance.

The dropped hidden feature vector ỹ is then reversely
mapped to a final feature z used to reconstruct the original
input x by another mapping function

z = ϕ′(�′ỹ + β ′). (4)

The expected result will be that z equals x. So we define
the constructing error using z to represent x as its Euclidean
distance �(x, z) = ‖x − z‖2

2. By minimizing �, the optimized
parameters is obtained

�opt,�
′
opt,βopt,β

′
opt = arg min

�,�′,β,β ′
�(x, z). (5)

In our model, to make the learned features more discrimi-
native, sparse constraint is included to the hidden representa-
tion [40], [41]. ỹ is trained to be sparse, and the average value
of elements in ỹ is expected to approximate zero. Then the
objective function is revised to

�opt,�
′
opt,βopt,β

′
opt = arg min

�,�′,β,β ′
�(x, z) + sparse(ỹ) (6)

where sparse() represents a type of sparse constraint, which
is expressed with KL [42] distance in our model.

Three basic types of noise are commonly utilized to corrupt
the input of the DAE, and the zero masking noise [22] is
employed in the proposed model.

B. Overall Architecture

The proposed SCDAE is an unsupervised deep network that
stacks well-designed DAEs in a convolutional way to generate
high-level feature representation. The overall architecture is
optimized by layer-wise training.

Fig. 2 illustrates the whole structure of the proposed method.
An input image is first sphered by a whitening layer and sent to
the first convolutional layer to be convolved into feature maps
with filters learned by the DAE of this convolutional layer
and sub-sampled by pooling operation to get smaller feature
maps. Then the feature maps are further processed by the next
whitening layer and passed to the next convolutional layer.
By layers of mapping, final convolutional feature maps are
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Fig. 2. Illustration of the proposed SCDAE.

generated, which are reshaped into discriminative input fea-
ture vectors of the subsequent support vector machine (SVM)
classifier.

The training samples of the DAE in a convolutional layer
are vector-form patches extracted from the feature maps of the
last convolutional layer. Dropout is used in DAE of each layer.

C. Convolutional Layer

The input of each convolutional layer is 3-D feature maps,
a mid-level representation of the input image. In each con-
volutional layer, the convolutional DAE transforms the input
features into more robust and abstract feature maps through
the learned denoising filters.

Given that S(l) ∈ RIi
1×Ii

2×Ci
is the whole input feature maps

of layer l, where Ci is the number of channels, Ii
1 and Ii

2
denotes the height and width of each input feature map. To
learn latent features from the input, adequate 2-D patches
P ∈ R(K1×K2×Ci)×N are first extracted from S(l) to compose
the training set of a DAE, where K1 × K2 × Ci denotes the
convolutional kernel size, i.e., each kernel is a 3-D array with
size K1 × K2 × Ci. N denotes the number of patches. Each
sample is reshaped to (K1 × K2 × Ci) × 1 vector for the con-
venience of training the DAE. The number of neurons in the
hidden layer Co can be manually designed.

Patches extracted from the input feature maps are then
normalized by subtracting the mean and dividing the stan-
dard deviation. By contrast normalization, input patches are
mapped to a canonical form ranging from [0.05, 0.95] to
reduce redundancy and make the network converge faster

P = P − mean(P)

var(P)
. (7)

Following the contrast normalization, patches are sent to
the whitening layer, where ZCA whitening is applied to the
patches to sphere features of the input in the training process:

P = WP = ET−1/2ETP (8)

where E and T are the eigenvectors and eigenvalues of the
covariance of P, respectively. W denotes the whitening matrix.

The parameters of the large network are updated using
stochastic gradient decent [43]. For instance, the weights
connecting the auto-encoder layers are updated as follows:

� = � − α
∂�(�,β, x)

∂�
(9)

where α is the learning rate and decreases as the number of
iteration increases. The updating rule of the learning rate is
demonstrated

α = α · (1 + γ · n)−t (10)

where n is the number of iterations, γ and t are scalar hyper
parameters predefined.

Robust and discriminative weights are learned when the
training process converges. We reshape the weights learned by
the DAE to 4-D form convolutional kernels k ∈ RK1×K2×Ci×Co

,
meaning Co kernels are learned in the hidden layer of the DAE
and each kernel is a K1 ×K2 ×Ci array. The lth layer’s feature
maps S(l) are then convolved by the kernels and subsampled
by the pooling operation to form the (l + 1)th layer’s feature
maps S(l+1)

S(l+1)
j = ϕ

(∑l

i=1
S(l)

i ∗ kij + βj

)
(11)

where S(l)
i is the ith feature map in layer l, kij denotes the ith

channel of the jth kernel, “*” denotes to convolution operation.
After convolution, pooling is conducted to the (l + 1)th layer’s
feature maps with pooling size s1 × s2.

The pooling operation can select significant features and
reduce the parameters of the network. Several forms of pool-
ing method have been proposed to subsample the features, e.g.,
max pooling, average pooling [44], stochastic pooling [45],
and spatial pyramid pooling [46]. We utilize two typical pool-
ing methods—max pooling and average pooling. Different
pooling methods are selected facing datasets with different
distributions.

D. Analysis

Compared with stacked DAEs and SSAEs, the proposed
model stacks DAEs in a convolutional way in the inference
stage. The spatial position of features in the lower layer are
kept in the feature maps of the higher layer in this way. This
structure greatly reserves the local relevance of features inside
the neighborhood.

Besides the convolution structure, the DAE contributes to
the representation learning in our model. Compared to the con-
ventional auto-encoder, the DAE can automatically denoise the
input data. This property is especially helpful when tackling
datasets with noise or large variation. Moreover, DAE can be
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Fig. 3. Illustration of learning stochastic mapping R. During training x is
mapped to x̂ by D(x̂|x, λ), then x̂ is mapped back to x via the learned mapping
R(x|x̂). Then data even far away from the curve can be mapped onto the right
surface through learned R.

interpreted from a probabilistic perspective. Suppose the origi-
nal data x (here x can be seen as a random variable that follows
distribution G, not a point) is in a hyperplane defined by dis-
tribution G. During denoising training, we learn a stochastic
operator R(x|x̂) that maps x̂ back to x

R
(
x|x̂) = ϕ′(�′(ϕ(�x + β)) + β ′). (12)

The corrupted version x̂ usually differs from the original
input data x that follows the distribution G, as Fig. 3 illustrates.
During training, x is mapped to x̂ by D(x̂|x, λ), then x̂ is
mapped back to x to learn a mapping R(x|x̂). At the inference
stage, data even far away from the original feature space can be
mapped onto the right surface through the learned mapping R.
The latent representation y can thus be regarded as a coordinate
that is capable to capture the main variations of the input data.

The above theoretical analysis gives a conclusion that
though DAE is a simple variant of the basic auto-encoder,
the principles and functionality differ a lot. Stacking DAEs
in a convolutional way can learn robust features and accu-
mulate the robustness layer by layer, thus can obtain much
more robust feature representations than merely stacking
conventional auto-encoders.

To learn the convolutional kernels, Masci et al. [24] trained
a convolutional auto-encoder which forwardly propagates the
features and backwardly propagates the gradients all in a con-
volutional way. Though the convolution structure can preserve
local relevance of the input data, training the auto-encoder con-
volutionally is not easy. To the best of our knowledge, there
are not many optimization method for convolutional training
in the unsupervised networks. To solve this problem, we use
the convolutional structure only in the inference stage. In the
training stage, we optimize a DAE in each layer through patch-
wise training. From the perspective of the number of training
samples, they nearly see the same number of samples. The
difference lies in that when training the auto-encoder con-
volutionally, the auto-encoder sees the input images as high
dimensional tensors, when training the auto-encoder patch-
wisely, the auto-encoder sees the input patches as 1-D vectors.
While the convolutional auto-encoder is hard to train, the con-
ventional DAE is easy to train, as some optimization methods
that have been proved to be efficient can be used properly,
such as sparse constraint, whitening, etc. Hence, by training
the auto-encoder patch-wisely, we can obtain better optimized

weights/convolutional kernels. In the inference stage, we still
use the convolutional structure, so the advantages of convolu-
tion can still be taken for better representation.

It should be noted that the layer-wise whitening technique
contribute a lot to optimizing the large network. Features
inside a local area P ∈ RK1×K2×Ci

which have Ci channels, are
closely connected to each other with high correlations. This
leads to redundancy in the training samples and prevents the
network from obtaining better convolutional kernels. To solve
this problem, the whitening layer is embedded into our model
to connect two adjacent convolutional layers. In the whitening
layers, ZCA whitening technique is used to preprocess the fea-
ture maps. Redundancy of the input data is removed through
this kind of normalization.

The proposed model can be used to pretrain the CNN. Deep
CNN has the problem of gradient vanishing, i.e., the gradients
back propagated to the bottom layers are too small that the
parameters in the first few convolutional layers update poorly.
This problem cannot be solved by expanding the training sam-
ples, as the gradients in the first few convolutional layers are
quite small in every iteration. On the contrary, our model is
optimized by layer-wise training to ensure each layer is trained
completely. Though the proposed model is unsupervised, it has
the necessary structures that CNN also holds to learn abstract
and discriminative feature representations, such as the con-
volution operation and the hierarchical structure. All these
properties make it possible for our model to initialize CNN.
This paper is supposed to be done in the future.

IV. EXPERIMENTS

In this section, we design detailed hyper-parameters to ver-
ify the effectiveness of the proposed unsupervised network
by conducting experiments on five benchmark datasets: the
STL-10 dataset [47], the Caltech 101 dataset [48], the Land-
use dataset [49], the CIFAR-10 dataset [50], and the MNIST
dataset [10]. Fig. 4 shows ten examples from each image
set. As an unsupervised deep network, SCDAE is compared
with the well-known deep unsupervised convolutional struc-
tures: the stacked convolutional auto-encoder (SCAE) [24],
the SSAE used in [21], CDBNs introduced in [28]. To eval-
uate the influence of the convolutional structure in deep
networks, we compared our algorithm with stacked denois-
ing auto-encoder (SDAE) [23] which does not contain a
convolution structure in the network.

The performance of SCDAE is significantly impacted by
the main hyper-parameters, i.e., the denoising structure, the
whitening layers, the depth of the network, and the number of
feature maps set in each layer. In our model, these parameters
are carefully designed by conducting sufficient experiments on
the validation set. The validation set is a 5% separation of the
training set. For fair comparison, all the algorithms are applied
only to learn the convolutional kernels and the raw images are
mapped to the final representations which are classified by a
linear SVM. All the experiments are conducted without data
augmentation.

In the following, we first introduce five image datasets used
to assess the performance of each algorithm. In this part,
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Fig. 4. Samples of the five image datasets used in our experiments. (a) STL-10. (b) Caltech-101. (c) Land-use. (d) CIFAR-10. (e) MNIST.

we also display the detailed parameter configurations of the
proposed method on each dataset. Then in the next part, clas-
sification results of different models on these datasets are
showed with rigorous analysis. After that, hyper-parameters
and the main techniques used in our model are evaluated with
certain datasets. Conclusions of the experiment results and
analysis are given in the last part of this section.

A. Datasets and Basic Configurations of SCDAE

1) STL-10 Dataset: The STL-10 dataset is a natural image
set for developing unsupervised feature learning, deep learn-
ing, and self-taught learning algorithms. The primary chal-
lenge is to utilize the unlabeled data to build a useful prior.
STL-10 dataset contains ten classes: 1) airplane; 2) bird; 3) car;
4) cat; 5) deer; 6) dog; 7) horse; 8) monkey; 9) ship; and
10) truck with a resolution of 96 × 96. Each class has 500
training images and 800 testing images. An additional 100 000
unlabeled images are provided for unsupervised learning. The
unlabeled images are extracted from a broader distribution of
images and contain other types of examples besides the ten
classes, e.g., bear and trains. Fig. 4(a) shows some examples
of this dataset.

We follow the standard setting in [47] and [51]: 1) perform
unsupervised feature learning on the unlabeled data; 2) per-
form supervised learning on the labeled data using predefined
tenfolds of 100 examples from the training data; and 3) report
average accuracy on the full test set. Detailed settings of
our network that achieve the best results as demonstrated in
Table I.

The input is a 96 × 96 × 3 RGB image. The convolu-
tional kernel size of the first layer is 9 × 9 × 3. In the
training stage, 9 × 9 × 3 patches are extracted from the nor-
malized and whitened image and then utilized to train the
first convolutional layer. After training, each input image is
convolved by the leaned filters to generate the output feature
maps with a size of 87 × 87 × 800. The second convolutional

TABLE I
MAIN PARAMETER SETTINGS OF

SCDAE ON STL-10 DATASET

layer (“2nd conv” in Table I) has 4000 2×2×800 convolutional
kernels which are trained by DAEs with patches extracted from
the 2×2×800 feature maps representing each training sample.
The output of the second convolutional layer is 2 × 2 × 4000
final feature maps representing each original raw image, which
are then classified by the subsequent linear SVM. The aver-
age activation of units in the hidden layer of DAE (denoted as
“sparse target” in Table I) in each convolutional layer is 0.01.

2) Caltech-101 Dataset: The Caltech-101 dataset are col-
lected from 101 classes of RGB images (such as animals,
vehicles, and flowers) with significant shape variability. Most
images are uncluttered and contain central objects that occupy
most of the image. Fig. 4(b) shows some examples of this
dataset. The number of images in each category varies from
31 to 800, and image sizes differ with a probable average size
of 300 × 300. We perform training on 30 randomly selected
images per class and test on the remainder. In our experi-
ments, each sample is resized to 225 × 225 before input into
the model for the convenience of data processing and time
saving. The detailed configurations of the proposed algorithm
is shown in Table II.

3) Land-Use Dataset: The Land-use dataset contains man-
ually extracted high-resolution aerial images downloaded from
the U.S. Geological Survey national map.1 The resolution of

1The dataset can be downloaded from http://vision.ucmerced.edu/datasets.

http://vision.ucmerced.edu/datasets
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TABLE II
MAIN PARAMETER SETTINGS OF SCDAE

ON CALTECH-101 DATASET

TABLE III
MAIN PARAMETER SETTINGS OF SCDAE

ON LAND-USE DATASET

the images is one foot per pixel and they are cropped to
256 × 256 pixels. The dataset contains 21 scene categories
with 100 samples per class. Some overlapping classes, such
as the dense residential, medium residential, and sparse resi-
dential (which mainly differ in the density of structures), are
particularly challenging to classify. Fig. 4(c) shows examples
from this dataset. In the following experiments, we randomly
take 80% of the images per category as the training samples
and take the rest to test the performance of the algorithms. The
detailed configurations of the proposed algorithm are shown
in Table III.

4) CIFAR-10 Dataset: The CIFAR-10 dataset consists of
60 000 32 × 32 color images in ten classes (i.e., airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, and truck)
with 6000 images per class. There are 50 000 training images
and 10 000 test images. The classes are completely mutually
exclusive. Fig. 4(d) shows some examples of this dataset. The
detailed configurations of the proposed algorithm are shown
in Table IV.

5) MNIST Dataset: The MNIST database of handwritten
digits has a training set of 60 000 examples, and a test set of
10 000 examples. It is a subset of a larger set available from
National Institute of Standards and Technology (NIST). The
digits have been size-normalized and centered in a fixed-size
image. Each image is a 28×28 gray image. Some of the images
are quite confusing from each other and it is challenging for
the algorithms to recognize them. Fig. 4(e) demonstrates some
examples of this dataset. The detailed configurations of the
proposed algorithm are shown in Table V.

B. Classification Results on Various Datasets

The proposed algorithm is compared with other algorithms
whose hyper-parameters have been optimized on the vali-
dation set. To evaluate the influence of the depth of the
network, experiments of one-layer SCDAE are also conducted

TABLE IV
MAIN PARAMETER SETTINGS OF SCDAE

ON CIFAR-10 DATASET

TABLE V
MAIN PARAMETER SETTINGS OF SCDAE

ON MNIST DATASET

on all datasets. The classification results on each dataset are
demonstrated in Table VI.

As shown, the proposed SCDAE method greatly outper-
forms all the other algorithms on the challenging STL-10,
Caltech-101, and Land-use datasets and gets superior results
to the best comparable algorithms on CIFAR-10 and MNIST
datasets, indicating the effectiveness and universality of our
algorithm. On Land-use dataset, there is over 10% promo-
tion compared with the highest classification result achieved
by other unsupervised deep networks. And on the chal-
lenging STL-10 dataset which is prepared for unsupervised
and semi-supervised algorithms, we beat the other algo-
rithms and achieve competitive classification performances.
All these results suggest the superiority of our model on
feature representation performance.

On all these datasets, our SCDAE model outperforms the
SDAE and SSAE algorithms, indicating the effectiveness
of convolutional structure over basic vector-form structures.
Comparing the results of our model and SCAE, the impor-
tance of denoising structure and patch-wise training strategy
is verified. Two-layer SCDAE model evidently promotes the
classification performance based on one-layer model, proving
that deep architectures can learn more discriminative features.
The detailed parameter settings, techniques, and structures are
evaluated in the next part.

C. Analysis of SCADE’s Properties

In this part, we mainly analyze the influence of structures
and techniques designed in the proposed model. The key struc-
tures that contribute to the success of our network are the
convolutional DAE and the whitening layer.

The importance of the whitening layers is first evaluated
with experiments on CIFAR-10 dataset. The network on this
dataset has two convolutional layers with a whitening layer
after the input of each convolutional layer. Empirically speak-
ing, the first whitening layer plays a key role in the training
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TABLE VI
CLASSIFICATION RESULTS OF THE UNSUPERVISED DEEP NETWORKS ON ALL FIVE DATASETS

Fig. 5. Visualization of filters learned by the DAE of the first convolutional
layer. (a) Filters without the first whitening layer to process the input data.
(b) Filters using the first whitening layer.

of the DAE in the first convolutional layer, as there is usually
much redundancy inside the raw images. The redundancy and
correlations of the pixels can be reduced by the ZCA whiten-
ing technique. We visualize the filters learned by the DAE of
the first convolutional layer with and without the first whiten-
ing layer to see its impact on the learning of convolutional
kernels. Fig. 5(a) shows the visualized filters learned by the
DAE without the first whitening layer on CIFAR-10 dataset,
and Fig. 5(b) shows the filters with the first whitening layer.

From Fig. 5, it is revealed that the DAE with a whiten-
ing layer to process the input data learns a plenty of edges
and color feature detectors, while the auto-encoder without
a whitening layer learns poor features, which certifies the
whitening layer’s capacity of optimizing the DAEs.

We take the whitening layer as a type of optimization
method and evaluate its ability of optimizing the deep network.
We apply our two-layer SCDAE on CIFAR-10 dataset with
and without the second whitening layer. To make a general
conclusion, we conduct this experiment with different sizes of
network. First, the number of hidden units in the second con-
volutional layer is fixed at 3000 and number of hidden units
in the first convolutional layer is altered from 200 to 1400. On
each size, the performance of SCDAE with and without the
second whitening layer is evaluated. Classification results are
shown in Fig. 6. Then, the number of hidden units in the first
convolutional layer is fixed at 1000 with that in the second
convolutional layer changing from 500 to 3500. Fig. 7 shows
the classification results by our algorithm.

The proposed network with the second whitening layer
outperforms the one without the second whitening layer in

Fig. 6. Classification results on CIFAR-10 dataset by SCDAE with and
without the second whitening layer. The number of the hidden neurons in the
second layer is fixed at 3000.

Fig. 7. Classification results on CIFAR-10 dataset by SCDAE with and
without the second whitening layer. The number of the hidden neurons in the
first layer is fixed at 1000.

various network sizes, indicating that the whitening layer has
the capacity of optimizing the large and deep neural network.
It is conducive to learning discriminative and invariant feature
representations from redundant input data.

We then apply the proposed SCDAE with the whitening
layers on all the five datasets, and apply SCDAE without the
second whitening layer on these datasets as a controlled trail.
The networks are trained with relatively fine hyper-parameter
settings. Performance demonstrated in Table VII further proves
the importance of the whitening layers in our model.

The importance of DAE is studied following the layer-wise
whitening technique. To verify the superiority of DAE over
conventional auto-encoder, we apply a two-layer SCDAE net-
work on STL-10 dataset. In the training stage, to highlight
the influence of denoising structures, we replace the DAE
in SCDAE with the basic sparse auto-encoder as a compara-
tive trial. To evaluate the influence of denoising structures on
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TABLE VII
RESULTS OF SCDAE WITH AND WITHOUT WHITENING LAYER

APPLIED TO THE SECOND LAYER ON FIVE DATASETS

Fig. 8. Classification results on STL-10 dataset with a two-layer SCDAE
stacked by DAE and the conventional auto-encoder. Number of hidden neurons
in the first convolutional layer are fixed at 1000 and the number of hidden
neurons in the second layer is changing.

different sizes of network, we fix the number of hidden neu-
rons in the first convolutional layer and change the number of
hidden neurons in the second layer. Classification results on
STL-10 dataset are shown in Fig. 8.

As shown in Fig. 8, SCDAE with DAEs to learn the filters
outperforms that with conventional auto-encoders on all the
network sizes, which illustrates that the DAEs have better fea-
ture representation capacity than conventional auto-encoders
and can be more helpful to boost the performance of the sub-
sequent linear SVM classifier. To strengthen this inference, we
apply the proposed network with the DAEs and with conven-
tional auto-encoders on all the five datasets and compare the
classification performance, as shown in Table VIII. Results
in Table VIII show that SCDAE with denoising structures
has advantages over the similar structure with the basic auto-
encoder on different datasets, which indicates the proposed
model has the ability of learning good features from data with
various distributions.

The relations between the performance and the size of the
deep network can also be inferred from the experiment results.
Seen from Figs. 6 and 7, when fixing the size of the second
convolutional layer, the classification results vary little as the
size of the first convolutional layer changes. However, when
fixing the size of the first layer in a proper value, the clas-
sification performance improves as the second convolutional
layer gets larger. It indicates that the size of the second layer
evidently affects the performance of the deep network, while
the size of the first layer has little effect. This verdict can guide
us to design an efficient network. For instance, the number of
hidden units in the first convolutional layer can be set relatively
small within a proper region while the size of the second layer
should be as large as possible. Figs. 7 and 8 also demonstrate

TABLE VIII
CLASSIFICATION RESULTS OF A TWO-LAYER SCDAE WITH DAE AND

THE BASIC SPARSE AUTO-ENCODER ON ALL THE FIVE DATASETS

a fine property of our network: when increasing the size of
the second layer, the classification results are increasing, sug-
gesting that the proposed network has a high boundary of the
capacity to learn discriminative feature representations.

D. Conclusion of Experiments

The proposed SCDAE network outperforms the con-
ventional unsupervised deep networks on five challenging
datasets, i.e., Caltech-101, STL-10, Land-use, CIFAR-10, and
MNIST. The recognition performances on these datasets prove
that our algorithm can learn better weights thus it can gen-
erate more representative features from the original images;
Compared with SAEs, the proposed model, stacking DAEs
in a convolutional way, can reserve local relevance and learn
better features.

The experiments studying the impacts of the designed struc-
tures indicate that the DAE structure acts as one of the key
roles in our model as it can help to learn robust and abstract
feature representations compared to traditional auto-encoders.
The whitening layers are indispensable to our model as there
is usually a big drop in accuracy when removing this struc-
ture. By conducting experiments with various sizes of network,
the relation between the complexity and the performance of
the designed network is revealed: the size of deeper lay-
ers has greater influence on the final feature representation
performance than the shallower layers.

V. CONCLUSION

This paper proposes the SCDAE, an unsupervised deep net-
work inspired by recent feature learning architectures CNN
and an improvement of the existing successful network SDAE.
SCDAE is constructed by stacking the DAEs whose param-
eters are optimized through patch-wise training in a convo-
lutional way. The deep model can learn robust and abstract
hierarchical feature representations from raw visual data in
an unsupervised manner. The large network is trained with
layer-wise whitening technique, which proves to be an effec-
tive regularization method by the classification performance
on the benchmarks. It is revealed that the proposed algo-
rithm outperforms conventional feature learning algorithms on
the challenging Land-use, Caltech-101, STL-10, CIFAR-10,
and MNIST datasets, indicating that the proposed algorithm
has superiority in learning robust and abstract hierarchical
representations.

Although the proposed architecture is effective, there is still
room for further improvements. Future work will aim to stack
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more layers with better optimization methods to learn highly
hierarchical features.
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