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An Unsupervised Artificial Immune Classifier for
Multi/Hyperspectral Remote Sensing Imagery

Yanfei Zhong, Liangpei Zhang, Bo Huang, and Pingxiang Li

Abstract—A new method in computational intelligence namely
artificial immune systems (AIS), which draw inspiration from the
vertebrate immune system, have strong capabilities of pattern
recognition. Even though AIS have been successfully utilized
in several fields, few applications have been reported in remote
sensing. Modern commercial imaging satellites, owing to their
large volume of high-resolution imagery, offer greater opportu-
nities for automated image analysis. Hence, we propose a novel
unsupervised machine-learning algorithm namely unsupervised
artificial immune classifier (UAIC) to perform remote sensing
image classification. In addition to their nonlinear classification
properties, UAIC possesses biological properties such as clonal
selection, immune network, and immune memory. The implemen-
tation of UAIC comprises two steps: initially, the first clustering
centers are acquired by randomly choosing from the input remote
sensing image. Then, the classification task is carried out. This
assigns each pixel to the class that maximizes stimulation between
the antigen and the antibody. Subsequently, based on the class,
the antibody population is evolved and the memory cell pool is
updated by immune algorithms until the stopping criterion is
met. The classification results are evaluated by comparing with
four known algorithms: K-means, ISODATA, fuzzy K-means,
and self-organizing map. It is shown that UAIC is an adaptive
clustering algorithm, which outperforms other algorithms in all
the three experiments we carried out.

Index Terms—Artificial immune system (AIS), clustering, pat-
tern recognition, remote sensing, unsupervised classification.

1. INTRODUCTION

ARIOUS algorithms such as maximum likelihood, paral-

lelepiped, and minimum distance from mean have been
employed in the past for classifying multi/hyperspectral data
in a pixelwise manner [1]. These algorithms are based on the
fact that each class of materials, in accordance to its molecular
composition, has its own spectral signature. A vast majority of
these are supervised algorithms, which require that the number
of classes and the class distribution model be known in advance.
Furthermore, these algorithms entail training samples from each
class to build models for different classes.
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Unsupervised classification algorithms are built to solve the
site labeling problem without the need for training samples [2]
(see [3] for more reasons of using unsupervised classification).
For example, the familiar K-means [4] and iterative self-or-
ganizing data (ISODATA) [5] algorithms iteratively assign
the pixels of an image to one of the classes. K-means finds
an optimal partition of the data distribution into the requested
number of subdivisions, while ISODATA is a modified version
of the K-means algorithm. Both of them assign an arbitrary ini-
tial cluster vector first. The mean vectors and covariance matrix
of clusters are then calculated based on the pixels in the initial
cluster; pixels in the image are assigned to the closest cluster to
form a new cluster and the label of each pixel is updated. The
mean vectors and covariance matrix of clusters are recalculated
subsequently based on the new clusters. In every iteration of the
classical K-means and ISODATA algorithms, each image pixel
is assumed to be in exactly one cluster, an alternative to the
crisp membership association uses fuzzy sets to describe the
relationship between the data points and the cluster centers. For
instance, fuzzy K-means [6] is an approach to clustering those
partitions of an image datasetinto K fuzzy subsets using fuzzy
membership. In addition to the aforementioned algorithms,
Bayesian classifiers [7] and Markov random fields [8] have also
been employed to obtain relative frequencies of individual and
neighbors among a pixel. Recently, there has been considerable
interest in applying unsupervised neural networks [9], such as
Kohonen'’s self-organizing maps (SOM), to multi/hyperspectral
remote sensing image classification. SOM was investigated as
a possible tool for automated knowledge acquisition.

Different with the above classifiers, we propose a novel un-
supervised artificial immune classifier (UAIC) to perform re-
mote sensing image classification. Artificial immune systems
(AIS), which are inspired by the immune systems, use the im-
munological properties in order to develop adaptive systems to
accomplish a wide range of tasks in various areas of research
[11]-[14] including pattern recognition [15], [16], intrusion de-
tection [17], [18], clustering [19], optimization [20], and intel-
ligence control [21]. In spite of the successful application of
AIS in several fields, few applications have been reported in
remote sensing. This may be due to the fact that it is difficult
to apply current AIS models to remote sensing image classifi-
cation owing to the huge data volumes associated with remote
sensing images. Nevertheless, we have attempted AIS for su-
pervised remote sensing image classification [22], [23], and we
will explore UAIC for unsupervised multi/hyperspectral image
classification in this paper, providing that it is sometimes hard to
obtain a representative set of training samples in the supervised
classification.
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In contrast to the conventional statistical classifiers, UAIC is
a self-learning algorithm by utilizing the immunological proper-
ties, such as memory property and clonal selection. The advan-
tages of AIS can be understood from the following theoretical
aspects. First and foremost, UAIC are data-driven self-adaptive
methods as they adjust themselves to the data without any ex-
plicit specification of functional or distributional form for the
underlying model. Second, they are universal functional approx-
imators since UAIC can approximate any function with arbi-
trary accuracy. Third, UAIC are nonlinear models, and hence
are flexible in modeling complex real world relationships. Last,
UAIC inherits the memory property of human immune systems
and can recognize the same or similar antigen quickly at dif-
ferent times. Our experiments elucidated that UAIC has high
classification precision and can be used in remote sensing image
classification.

The remainder of the paper is organized as follows. Section II
provides a synopsis of the human immune system. Section III
explains the UAIC in detail. In Section IV, the experimental re-
sults are provided. Section V discusses the main properties of
the UAIC in theoretical and empirical terms. Finally, the con-
clusion is provided in Section VI.

II. HUMAN IMMUNE SYSTEM

The human immune system is a complex system made of
cells, molecules, and organs that together constitute an identi-
fication mechanism capable of perceiving and combating dys-
function from our own cells and the action of exogenous in-
fectious microorganizms as well. The human immune system
safeguards us against infectious agents such as viruses, bacteria,
fungi, and other parasites. Any molecule that can be recognized
by the adaptive immune system is known as an antigen (Ag).
Lymphocytes or the white blood cells are the fundamental com-
ponents of the immune system. Within the human body, Lym-
phocytes are found in two forms, B cells and T cells. Func-
tionally, these two types of cells differ in their mode of antigen
recognition. B-cells are capable of recognizing antigens free in
solution, while T cells require antigens to be presented by other
accessory cells. Each has its distinct chemical structure and pro-
duces many Y-shaped antibodies (Ab) from its surface to kill the
antigens. Ab’s are molecules attached primarily to the surface
of B cells whose aim is to recognize and bind to Ags [24].

The clonal selection theory [25] explains how an immune
response is mounted when a nonself-antigenic pattern is rec-
ognized by a B cell. As Fig. 1 shows, when a B-cell receptor
recognizes a nonself-antigen with certain affinity, it is then se-
lected to proliferate and produce antibodies in high volumes.
The antibodies are soluble forms of the B-cell receptors that are
released from the B-cell surface to cope with the invading non-
self-antigen. Antibodies bind themselves to antigens, thus re-
sulting in their eventual elimination by other immune cells. In
case of immune cells, proliferation is an asexual or a mitotic
process; the cells divide themselves.

Once a B cell is sufficiently stimulated through close affinity
to a specific antigen, it rapidly produces clones of itself. At the
same time, the B-cell clones undergo a hypermutation process at
particular sites in its gene, which enables the new cells to match
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Fig. 1. Adaptive immune response. (a) Closest antibody chosen. (b) Chosen

antibody clones and mutates, producing new antibody (antibody not stimulated
will die). (c) Antibody with high affinity becomes memory cell.

the antigen more closely. There is a very rapid proliferation of
immune cells, successive generations of which are better and
better matches for the antigens of the invading pathogen [26].

The B cells that are not stimulated as they do not match any
antigens in the body will eventually die. On the contrary, the
activated B cells with high antigenic affinities are selected to
become memory cells. When a body has successfully defended
against a pathogen, memory cells remain and circulate in the
blood, lymph, and tissues for very long periods of time. These
memory cells recognize antigens similar to those that originally
caused the immune response and created the memory cells, so
that the body’s response to a later invasion of the same pathogen
or a very similar invader is much more rapid and powerful than
to an invader never seen before in the primary response.

Similar to the immune systems, neural networks also create
memory elements. However, their underlying mechanisms of
memory and recognition are very different. In neural systems,
the assimilation of memories is achieved by alteration of the
strengths of connections between neurons, rather than changes
within the neurons themselves. Further, the brain allows mem-
ories to be addressable by content, so that the frequent death of
individual neurons does not drastically affect the performance
of the brain as a whole [14], [27]. For example, in an adaptive
resonance theory (ART) based network, a cluster (or class) is
represented by its neural memory as a template. A template is an
abstraction of the patterns in a cluster that are formed and mod-
ified during the learning (training) process. Hence, the number
of templates increases (for a fixed parameter setting) according
to the diversity of input patterns [28], [29].

The immune systems possess a cross-reactive memory that
is observed when an individual develops a memory to one
antigen and is challenged with a related, but different one. The
cross-reactive memory, clonal expansion, and programmed cell
death rates allow the immune system to dynamically allocate
resources as needed in a distributed environment.
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TABLE 1
MAPPING BETWEEN THE HUMAN IMMUNE SYSTEM AND UAIC

Immune System UAIC

Antigens Training data/image pixel

Antibody Feature vector/clustering centers

Shape-Space The possible values of the data vector/pixel

Clonal Expansion Reproduction of clustering centers that are well

matched with antigens

Affinity Maturation | Proportional mutation of clustering centers and

removal of lowest stimulated clustering centers

Immune Memory Memory set of mutated clustering centers

Metadynamics Continual removal and creation of clustering

centers

III. UNSUPERVISED ARTIFICIAL IMMUNE CLASSIFIER

The clonal selection followed by the B-cells of the biolog-
ical immune system is the fundamental mechanism on which
UAIC is modeled. Antigens in UAIC are simulated as feature
vectors which are presented to the system during training and
testing. In particular, UAIC has its specific representation in
remote sensing image classification. The antibodies as candi-
date clustering centers experience a form of clonal expansion
after being presented with an input image data (analogous to
antigens). When antibodies are cloned, they must undergo the
affinity mutation process inversely proportional to the antigenic
affinity: the higher the affinity, the smaller the mutation rate.
The term metadynamics of the immune system refers to the con-
tinuous changing of the AB population through antibodies pro-
liferation and death. The above process is described in UAIC
with the continual creation and removal of antibodies with lower
affinity from the population. Table I summarizes the mapping
between the human immune system and UAIC.

During the course of iteration in UAIC, there may be many
antibodies; however, in the final system, only their special subset
constituting the memory cells will be used to classify the image
in the next iteration.

Multi/hyperspectral ~remote  sensing data 7 =
{zY,22,...,2™}T through N, bands are observed
and mapped to a finite rectangular lattice W =

((4,4)) 1 <4 < N1 < j < Nj), where N; and
N; represent the number of rows and columns, respectively.
The character T denotes the transpose of a matrix. The set
2 = {a%,... ,J;leTNj :b=1,...,Ny}T denotes the data
taken at the bth wavelength, where a?; e (0,...,G — 1)
and G is the number of observable gray levels. At the ij th
pixel, a Nj-dimensional feature vector z;; = (zj;,... ,:cg”)T
is observed. The entire set of image data can be denoted as
x = (x5 :1 <1< N;,1 <j < Nj). A classified image
is denoted as w = (w;; : 1 <3 < N;,1 < j < Nj), each
pixel of which is to be assigned to one of nc classes. That is,
wi; € (1,2,...,nc), where nc is the number of classes and is
assumed to be known.

Fig.2. Antibody population (denoted by AB) model of one class (o represents
the AB’s scale/radius of influence).

Hence, for this discussion about multi/hyperspectral remote
sensing classification using UAIC, let us establish the following
notional conventions [30].

» Let AB represent the set of antibodies, and ab represents a
single antibody where ab € AB.

* Let MC represents the set of memory cells and mc repre-
sents an individual member of this set.

* Let ag.c represents the class of a given antigen, ag, where
ag.c € C' ={1,2,...,nc} and nc is the number of classes
in the dataset.

e Let mc.c and ab.c represent the class of a given memory
cell and antibody, mc and ab, respectively, where mc.c €
C,abc € C.

e Let MC, represent the memory cell’s set of the cth class
such that MC, C MC = {MC; UMCy U ---MC,,.} and
mc € MC, = {mc|mc.c = c¢}.

* Let AB. represent the antibody’s set of the cth class such
that AB. C AB = {AB; UABy U ---AB,.} and ab €
AB,. = {ablab.c = c}.

e Let ag.f and mc.f represent the feature vector of a given
antigen and memory cell, ag and mc, respectively. Let ag.f;
represent the value of the ¢th value of ag.f and mc.f; repre-
sents the value of the ¢th value of mc.f. In remote sensing
image classification, they represent the gray value of every
band.

With the above notations, the AB model can then be built.
Fig. 2 shows a diagrammatic representation of the notion of An-
tibody (AB) set model of one class: there is a certain volume AB
in the immune system that contains many antibodies of the class
(represented by the circles and denoted by ab) and memory cells
(represented by the rhombi and denoted by mc). In AB, there is
a small surrounding region called memory cell set contained all
memory cells of the class, denoted by MC. In remote sensing
image classification, the memory set decides the recognizing
ability of the whole AB. InFig. 2, o represents the MC’s scale/ra-
dius of influence. Within the range of o, the AB can recognize
all antigens. That is, the AB can represent a number of antigens.
As can be seen from Figs. 1 and 2, upon encountering an antigen,
antibodies (ab in Fig. 2) are stimulated undergoing cloning and
mutation. The antigens are then attacked by antibodies and re-
moved from the immune systems. The immune systems maintain
and evolve the memory set (MC in Fig. 2) so that if ever exposed
to the same antigen a quicker response can be elicited against
the infection. he proposed algorithm is as follows.
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Step 1. Select as the first memory cell the most centrally located instance

Step 2. FOR every nonselected antibody ab; DO
Step 2.1 FOR every nonselected antibody w, DO

Calculate C,; = max(D, —d ;,0) where d, = dis(ab;,ab,)and

ji»
D, =min_ dbeing s one of the sclected memory cells.

Step 2.2 Calculate the gain of sclecting ab, byzl C;

Step 3.Select the not yet selected instance ab; as memory cell mc which
maximizes Z/C i

Step 4. IF there are C selected memory cells THEN stop
ELSE go to Step 2.

Step 5.For having a clustering assign each nonselected antibody in Abm to the

cluster represented by the nearest memory cell to initial the Ab<,, )

Fig. 3. Pseudocode of the KA initialization method.

A. Initialization

The initialization stage can be thought of as a data prepro-
cessing stage combined with a parameter discovery stage.

UAIC applies Kaufman approach (KA) [31] to initial memory
cell population MC. The algorithm is represented in Fig. 3. In
this case, the initial memory cell population is obtained by the
successive selection of representative instances until C memory
cells have been found. The first representative memory cell is
the most centrally located instance in AB. It indicates the first
representative memory cell has the minimum distance to the
mean of AB. The rest of representative memory cells are se-
lected according to the heuristic rule of choosing the memory
cells that promise to have around them a higher number of the
rest of antibodies.

In UAIC, the function dis(z,y) represents the distance be-
tween vector x and y. Since UAIC is applied to multi/hyperspec-
tral remote sensing image classification, the distance between x
and y, dis(z, y), is calculated using the spectral angle mapping
algorithm (SAM) [32]. Let vector z = {x!,22,... 2™} and
y = {y*, %, ...,y }, Ny is the band number of the remote
sensing image. Then the distance between x and y is given by (1)

Ny i,
1 Ei:p’ﬂy

=2 @] S ]

dis(z,y) = a = cos™ 172

ey

Affinity is inversely proportional to distance in the feature
space. In UAIC, affinity is defined as in (2) below according
to the antibody population model (Fig. 2) so that the affinity
between antigens and antibodies or between two antibodies is
in the range [0, 1] and each AB has its radius of influence

dr.9))

201-2

affinity(z,y) = exp (— 2)

and o; is AB’s scale/radius of influence
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B. Classification Using UAIC

Once initialization is over, the next step is the iteration of
the algorithm. For each iteration, the algorithm performs the
following steps to train each antigen ag in the remote sensing
image.

Step 1: Assign ag to kth class: For each ag in the image, as-
sign that antigen to one of nc classes, where the class is assumed
to be the kth class. Given a specific training antigen, ag, find the
memory cell, mc, that has the maximal affinity as follows:

me = arg max affinity(ag, mc). 3)

Then assign that ag to the class of mc, ag.c = mc.c = k(k €
C ={L,2,...,nc}).

Step 2: Evolving the antibody population AB*: After as-
signing the ag to kth class, evolving the antibody population
AB* and the memory cell pool MC* are accomplished as
follows.

1) Determine the vector fj, that contains the affinity of ag to
all the Naop Ab’s in AB*, where NAp is the number of
the antibody set AB*.

2) Select the n highest affinity Ab’s from AB* to compose
a new set AB’{“n} of high-affinity Ab’s in relation to ag,
where 7 is the number of the cloned antibodies in AB*.

3) The n selected Ab’s independently and proportional to
their antigenic affinities, generating a clone set C'*: the
higher the antigenic affinity, the higher the number of
clones generated for each of the n selected Ab’s. The
number of clones generated for all these n selected an-
tibodies is given by

NumClones = Z round(Clonal rate e affinity(ag, ab;)) (4)

=1

where NumClones is the total number of clones generated
for ag. The clonal rate, denoted by Clonal_rate, is used
to determine how many clones are produced by Ab’s and
memory cells, a typical value is 10, and round() is the op-
erator that rounds its argument toward the closest integer.

4) Submit the clones set C* to an affinity maturation process
inversely proportionally to its antigenic affinity, gener-
ating a population MU* of matured clones: the higher the
affinity, the smaller the mutation rate. The mutation rate
is determined by (5) as follows:

mutate_rate = 1 — affinity(ag, ab;). 3)

The mutation of the clones set C* is performed ac-
cording to the following equation:

MUY = C¥ +mutation_rate  N(0, 1)i € [1, NumClones] (6)

where N(0,1) is a Gaussian random variable of zero
mean and standard deviation of one. As MUY represents
a candidate solution, it must be within the range of the
functions specified domain. If MU¥ exceeds that, then it
is rejected and removed from the population.
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CandAfj = affinity(ag, mC g,ue )
MatchAff = affinity(ag,mc,,,,)

Cel lD is = Dis (mceundidum sm cmalch )
if(CandAff > MatchAff)

if(CellDis < DT*DTS)

MC, = MC, —mc

match

end

MC, = MC, Umc

candidate

end

Fig. 4. Update memory cell pool.

5) Redetermine the affinity f; of the matured clones MU*
in relation to antigen ag.

6) Select the highest affinity ab in relation to ag to be a candi-
date memory cell, mCandidate, to €nter the set of memory
antibodies MCF.

7) Replace the 3 lowest affinity ab from AB* with d highest
affinity from MU in order to evolve the antibody popu-
lation. 3 is the displace rate.

Step 3: Updating memory cell pool MC®: The final stage
in the training process is the potential introduction of the just-
developed candidate memory cell, mccandidate, int0 the set of
existing memory cells MC.

1) Find the memory cell in MCk, MCratch, that has the fol-
lowing property:

MCpatch = arg  max affinity(ag, mc). 7

mcEMCk

2) Calculate the distance threshold (DT)

Ny
DT =Y (MAX; — MIN;) (8)

i=1

where MAX;, MIN; represent the maximum and min-
imum values of the sth and of the remote sensing image,
respectively. N, is the number of bands of the image.

3) Promoting candidate memory cell to memory cell pool

Mck.

The candidate memory cell is added to the set of memory cells
only if it has higher affinity in relation to the training antigen,
ag, than mcytch, Where affinity is defined as in (2). If this test
is cleared, then if the distance between mCcapndidate aNd MCpatch
is less than the product of the affinity threshold and the user-de-
fined distance threshold scalar (DTS), then mc.andidate replaces
MCyatch in the set of memory cells. The process is presented in
Fig. 4.

Once the candidate memory cell has been evaluated for ad-
dition into the set of established memory cells, training on this
antigen is complete. The next antigen in the multi/hyperspectral
image is then selected and the training process proceeds from
step 1 to step 3. This process continues until the system has been
presented with all antigens in the image.

UAIC
iterative classification

Initialization AB andMC
Assign ag tok class
in

Evolve the antibody
population4B*
image

Develop memory cell
pool MC ¥ and complete

the training of this antigen

Multi/hyper-spectral

remote sensing image

Train
every
antigen

in iteration

stopping condition

classified
image

T2/

Fig. 5. UAIC flowchart.

Step 4: Consolidating and controlling the memory cell pool
MC: Subsequent to each iteration, memory cells with identical
session data information should be merged to limit the memory
cell population growth according to their affinity.

C. Stopping Condition

The stop condition is different in different applications. One
option is to set a fixed number of iterations as the stop condition.
Another option is to set a fixed threshold, i.e., the pixel change
threshold, for the proportion of pixels in each class that change
class as the stop condition. In UAIC, the latter is selected as the
stopping condition. Finally, UAIC outputs the classification re-
sult of remote sensing image. The flowchart for UAIC is shown
in Fig. 5.

IV. EXPERIMENT RESULTS

The aforementioned UAIC algorithm was coded in Visual
C++6.0 and tested on different images. Three experiments were
conducted to test its performance. Consistent comparisons be-
tween UAIC and traditional unsupervised algorithms, K-means
and ISODATA, were completed. The estimation of classifica-
tion accuracy for the several classifiers is provided.

A. Experiment 1: Wuhan TM

We tested the unsupervised classification algorithm proposed
in Experiment 1 using 30-m resolution multispectral Landsat
TM image shown in Fig. 6. The image (400 x 400 pixels), was
acquired in Wuhan city, Hubei, China, On October 26, 1998.
The survey area is part of the city, and the primary objective
of the survey was to discriminate various objects. The observed
image was expected to fall into four classes: water, vegetation,
road and building. The list of classes and the number of labeled
samples for each class is given in Table II.

The chief running parameters that should be provided by
users in the classification calculation were as follows: the
number of iterations, the number of classes, the number of
highest affinity ab, clonal rate Clonal_rate, displace rate, and
distance threshold scalar. The values of parameters were set
as shown in Fig. 7. For a convenient comparison between
UAIC and traditional unsupervised algorithms, the pixel
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Fig. 6. Wuhan TM image, October 1998 RGB(3, 2, 1).

TABLE 1II
LiST OF CLASSES AND NUMBER OF LABELED SAMPLES
IN EACH CLASS FOR EXPERIMENT 1

Class Name Number of labeled samples
Water 450
Vegetation 365
Road 418
Building 429
Total number of samples 1662
UAIC Parameters - x|

Number of classes:

Maximum Iterations:
Humber of antibody(n)
Clonal rate:

Displace rate:

DTS: 0.35

Fig. 7. Parameters dialog in Experiment 1.

change threshold as stop condition is kept at the same value,
3%. Fig. 8(a) illustrates the classification result using UAIC.
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(e) (f)
.o vegetation oo building

Fig. 8. Unsupervised classification images for Wuhan TM image. (a) UAIC.
(b) K-means. (c) ISODATA. (d) Fuzzy K-means. () SOM (10 x 10 feature
map). (f) The image for test fields used in Experiment 1.

Fig. 8(b)—(e) illustrates the classification results using K-means,
ISODATA, fuzzy K-means, and SOM (using 10 x 10 feature
map) algorithms, respectively. To evaluate the classification
accuracy, a test field map is provided in Fig. 8(f) based on the
ground truth data.

The visual comparisons of the five cluster classifications in
Fig. 8 suggest varying degrees of accuracy of pixel assignment.
It can be found from the classification images (Fig. 8) that five
classifiers have similar classification results in the water class.
K-means and ISODATA create similar classification maps, and
it is hard to differentiate between buildings and roads. While
being able to distinguish between buildings and roads, fuzzy
K-means fares the worst in vegetation classification because
many vegetation pixels are misclassified to the building class.
SOM also recognizes the roads well though a number of non-
road pixels (e.g., vegetation) are misclassified to the road class.
By contrast, UAIC achieves the best visual accuracy in the veg-
etation class than other classifiers, and also performs satisfac-
torily to the building and road classes. As a result, those using
UAIC have better results for four classes.
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Fig. 9. (a) Convergence of memory population in the water class. (b) The

convergence of memory population in the building class.

In executing UAIC, the population of memory cells in each
class continues to change. When the mean of the population in
each class is less than a fixed threshold, the iteration will end.

Fig. 9(a) and (b) shows the converging trend of the memory
population by calculating the average value of memory cells in
the water and building classes, respectively. As iteration goes
on, the change of memory population between two successive
iterations becomes smaller. It is noticed that the interval of the
change in the water class is smaller than the building class. This
is due to the fact that the complexity of ground substances and
the diversity of disturbance are different in the two classes. In
general, the water class is more homogeneous, hence the con-
vergence in this class is faster.

For a more detailed verification of the results, we compared
ground truth data with the classified images and assess the ac-
curacy of each classifier quantitatively using both the overall
accuracy measure and the Kappa coefficient. Tables III-IV list
the results of comparisons between the ground truth data and

TABLE III
COMPARISON OF FIVE METHODS OF CLASSIFICATION

Methods Water | Vegetation Road Building Total
Water 413 22 0 0 435
Vegetation 37 211 51 89 388
K-means Road 0 53 295 24 372
Building (4] 79 72 316 467
Total 450 365 418 429 1235
Water 434 15 7 0 456
Vegetation 16 238 38 91 383
ISODATA Road 0 45 263 21 349
Building 1] 67 90 317 474
Total 450 365 418 429 1272
Water 450 17 5 0 472
Vegetation 0 219 45 57 321
Fuzzy Road 0 23 291 31 345
K-means Building ] 106 77 341 524
Total 450 365 418 429 1301
Water 450 56 17 0 523
Vegetation 0 245 29 24 298
SOM Road 0 31 338 88 457
Building 0 33 34 317 384
Total 450 365 418 429 1350
Unsupervis Water 450 22 0 14 486
ed artificial | Vegetation 0 284 22 22 328
immune Road 0 14 333 59 406
classifier Building 0 45 63 334 442
(UAIC) Total 450 365 418 429 1401
TABLE IV
COMPARISON OF FIVE CLASSIFIER PERFORMANCES IN EXPERIMENT 1
Accuracy K-means ISODATA Fuzzy SOM UAIC
K-means
Overall 74.31% 76.53% 78.28% 81.23% 84.30%
accuracy
Kappa 0.6570 0.6866 0.7093 0.7486 0.7899
coefficient

classified images obtained by five classifier: UAIC, K-means,
ISODATA, fuzzy K-means, and SOM.

From Tables III and IV it is apparent that the UAIC classifier
produces better classification results than other classifiers. The
details are as follows: UAIC exhibits the best overall classifi-
cation accuracy, i.e., the best percentage of correctly classified
among all the testing pixels considered, with a gain of 9.99%,
7.77%, 6.02%, and 3.07% over the K-means, ISODATA, fuzzy
K-means, and SOM algorithms, respectively. UAIC improves
the Kappa coefficient from 0.6570 to 0.7899, an improvement
by 0.1329. This is due to that the conventional unsupervised
multivariate classifiers require ideal conditions. However, be-
cause of the complexity of ground substance and the diversity of
disturbance, the ideal conditions are not often met in real classifi-
cation calculations. As a result, these conventional classification
methods have a low precision. On the other hand, UAIC is a
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Fig. 10. Wuhan MODIS image, April 2, 2002 RGB(3, 4, 6).

TABLE V
LiST OF CLASSES AND NUMBER OF LABELED SAMPLES
IN EACH CLASS FOR EXPERIMENT 2

Class Name Number of labeled samples
Water 295
Vegetation 263
City 298
Cloud 263
Total number of samples 1119

data-driven self-adaptive method which can adjust itself to the
data without any explicit specification of functional or distribu-
tional form for the underlying model. UAIC can approximate
any function with arbitrary accuracy by universal functional ap-
proximator. In addition, UAIC is a nonlinear model which makes
it flexible in modeling real, complex relationships. Therefore,
UAIC classifier has the capacities of self-learning and is robust.

B. Experiment 2: Wuhan MODIS

Wauhan is the study area considered in this experiment. The
data item employed in this experiment is a 500-m resolution
MODIS image (400 x 400 pixels), acquired on April 2, 2002.
The level 1B datasets include 500-m reflectance data for chan-
nels 3, 4, 6, 7. The four spectral channels used in this experi-
ment are at 0.46-0.48,0.55-0.57, 1.63-1.65, and 2.11-2.16 pm.
Fig. 10 shows the experimental MODIS image. The observed
image was expected to fall into four classes: water, vegetation,
city, and cloud. The list of classes and the number of labeled
samples for each class is given in Table V.

In Experiment 2, the parameters were set as shown in Fig. 11.
It should be noted that UAIC has a different value of DTS in
Experiment 2, from 0.35 in Experiment 1 to 0.7 in Experiment
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UAIC Parameters x|

Number of classes:

Maximum Iterations: 2

Number of antibody(n) |[L0

Clonsal rate: S

0

T

Displace rate:

DTS 0.7

Fig. 11. Parameters dialog in Experiment 2.
2. For a convenient comparison between UAIC and traditional
unsupervised algorithms, the pixel change threshold is kept at
the same value, 3%. Fig. 12(a) illustrates the classification re-
sult using UAIC. Fig. 12(b)—(e) illustrates the classification re-
sults using K-means, ISODATA, fuzzy K-means, and SOM al-
gorithms. To evaluate the classification accuracy, a test field map
is provided in Fig. 12(f) based on the ground truth data. The clas-
sification accuracy for the several classifiers is given in Table VI.
As shown in Fig. 12, UAIC and SOM are more capable of dis-
tinguishing between the city class and other classes, but SOM
is confused by vegetation that is classified to other classes. It
is seen from Table VI that the UAIC classifier produces better
classification results than traditional classifiers. The details are
as follows: UAIC improves overall classification accuracy from
74.71% to 84.63%, an improvement by 9.92% and Kappa coef-
ficient from 0.6631 to 0.7949, an improvement by 0.1318. Based
on the above, we can conclude that UAIC is a better classifier
for multispectral remote sensing image classification.

C. Experiment 3: Xiagiao PHI

In this experiment, the data are airborne imaging spectrom-
eter (PHI) data, 80 bands taken from Xiaqiao test site which is
a mixed agricultural area in China. Eighty bands of PHI image
(340 x 390 pixels) were used in this experiment, and their spec-
tral ranges were from 0.417-0.854 pm. Fig. 13 shows the ex-
perimental PHI image. The observed image was expected to fall
into seven classes: water, cornl, corn2, roadl, road2, soil, and
vegetable. The list of classes and the number of labeled samples
for each class is given in Table VII.

Fig. 14 shows the values of parameters as set in Experiment
3. It is to be noted that UAIC has a different value of DTS in
Experiment 3, from 0.35 in Experiment 1 to 0.85 in Experiment
3. For a convenient comparison between UAIC and traditional
unsupervised algorithms, the pixel change threshold is the same
value, 3%. Fig. 15(a) illustrates the classification result using
UAIC. Fig. 15(b)—(e) illustrates the classification results using
K-means, ISODATA, fuzzy K-means, and SOM algorithms. To
evaluate the classification accuracy, a test field map is provided
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(e) ' )

e vegetation - city

Fig. 12. Unsupervised classification images for Wuhan MODIS image.
(a) UAIC. (b) K-means. (c) ISODATA. (d) Fuzzy K-means. (¢) SOM (10 x 10
feature map). (f) The image for test fields used in Experiment 2.

cloud

TABLE VI
COMPARISON OF FIVE CLASSIFIER PERFORMANCES IN EXPERIMENT 2

Accuracy K-means ISODATA Fuzzy SOM UAIC
K-means
Overall 74.71% 74.98% 79.00% 81.95% | 84.63%
accuracy
Kappa 0.6631 0.6669 0.7199 0.7586 0.7949
coefficient

in Fig. 15(f) based on the ground truth data. The classification
accuracy for the several classifiers is given in Table VIII.

As shown in Table VIII, the UAIC classifier produces better
classification results than traditional classifiers. The details are
as follows: UAIC improved overall classification accuracy from
70.21% to 81.56%, an improvement by 11.35% and Kappa
coefficient from 0.6153 to 0.7535, improving 0.1382. Based on
the above, we can make a conclusion that UAIC is the good
classifier applied with hyperspectral remote sensing image
classification.

Fig. 13. Xiaqiao PHI image RGB(70, 40, 10).

TABLE VII
LiST OF CLASSES AND NUMBER OF LABELED SAMPLES
IN EACH CLASS FOR EXPERIMENT 3

Class Name Number of labeled samples
Water 473
Corn | 460
Corn 2 478
Road 1 442
Road 2 434
Soil 434
Vegetable 449
Total number of samples 3161

V. SENSITIVITY ANALYSIS OF UAIC

UAIC has two user-defined parameters that significantly in-
fluence: 1) the convergence speed; 2) the computational com-
plexity. These parameters are as follows:

1) Clonar_rate: the multiple of clonal antibody

2) DTS: Distance threshold scalar. It affects the number of

memory cell population and computational times.

In order to analyze the effects of setting these parameters
when running UAIC, Wuhan TM image, shown in Fig. 6, was
classified using different values of parameters.

A. Sensitivity in Relation to Parameter Clonal_Rate

Inorderto study the UAIC sensitivity inrelation to Clonal_rate,
other parameters were the same with in Experiment 1 and
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UAIC Parameters F x|

Humber of classes:

Maximum Iterations: 2
Humber of antibody(n) |10
Clonal rate: 5

0

Displace rate:

T

DTS 0.85

Fig. 14. Parameters dialog in Experiment 3.

Clonal _rate assumed the following values: Clonal_rate
{5,10,15,20,50}.

It can be seen from the results presented in Fig. 16 that higher
the Clonal_rate, the faster the convergence, in terms of number
of generations. However, the computational costs per generation
increases linearly with Clonal_rate since the number of antibody
population increases linearly.

B. Sensitivity in Relation to Parameter DTS

Distance threshold scalar is very important to maintain the
diversity of memory cell population and update the memory
cell population. The other parameters are kept the same as in
Experiment 1 and DTS assumed the following values: DTS =
{0,0.1,0.2,0.3,0.5,0.7,0.9,1}. As can be seen from Fig. 17,
the number of memory cell decreases from 253 to 4 while DTS
increases from 0 to 1.0.

It can be noticed that for value DTS = 0.0, the memory
cell population is largest and has the better classification results.
Nevertheless, it needs much computational time. It is also inter-
esting to observe that the number of memory cell is equal to the
number of classes for DTS = 1.0.

VI. CONCLUSION

A novel algorithm based on the paradigm of the nature im-
mune systems, UAIC, was designed and implemented in this
paper. The UAIC was successfully applied for classifications
of multi/hyperspectral remote sensing images. UAIC was ca-
pable of performing data clustering by generating a representa-
tive set of memory cells for classification. The key mechanisms
and concepts embodied in UAIC include antibody population
evolution, clonal selection and memory cell development. To
simulate the antibodies in immune systems, we proposed the
antibody population model in UAIC and apply the model to the
definition of affinity between an antibody and an antigen for re-
mote sensing image classification.

The experimental results consistently show that the proposed
UAIC has high classification precision. When compared with
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(e)
B aier - cornl - corn2
soil vegetable

()
roadl - road2

Fig. 15. Unsupervised classification images for Xiaqiao PHI image. (a) UAIC.
(b) K-means. (c) ISODATA. (d) Fuzzy K-means. (¢) SOM (10 X 10 feature
map). (f) The image for test fields used in Experiment 3.

TABLE VIII

COMPARISON OF FIVE CLASSIFIER PERFORMANCES IN EXPERIMENT 3

Accuracy K-means ISODATA Fuzzy SOM UAIC
K-means

Overall 70.21% 71.33% 75.67% 78.95% | 81.56%
accuracy

Kappa 0.6153 0.6756 0.7199 0.7177 0.7535
coefficient

other four unsupervised classifiers, K-means, ISODATA, fuzzy
K-means, and SOM, the average performance of UAIC is better
than them. In three experiments with different types of images,
the average overall accuracy and Kappa coefficient are improved
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Fig. 17. UAIC sensitivity in relation to DTS.

from 73.08% and 0.655 using K-means algorithm to 83.50%
and 0.7794 using UAIC, respectively. This evinces that UAIC
is applicable for processing of the multi/hyperspectral remote
sensing image and has high classification precision. In future
work, we will investigate the sensibility of the proposed method
as a function of the number of classes and may use other metrics.
Furthermore, we will enhance our classifiers by considering fea-
ture selection or extraction using other AIS models in high-di-
mensional feature space to avoid Hughes phenomena. We may
also integrate AIS with a powerful noise remover [33] for im-
proving the classification performance.
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