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Abstract—The artificial immune network (AIN), which is a new
computational intelligence model based on artificial immune sys-
tems inspired by the vertebrate immune system, has been widely
utilized for pattern recognition and data analysis. However, due to
the inherent complexity of current AIN models, their application
to remote-sensing image classification has been rather limited.
This paper presents a novel supervised classification algorithm
based on a multiple-valued immune network, which is a novel
AIN model, to perform remote-sensing image classification. The
proposed method trains the immune network using the samples of
regions of interest and obtains an immune network with memory
to classify the remote-sensing imagery. Two experiments with dif-
ferent types of images are performed to evaluate the performance
of the proposed algorithm in comparison with other traditional
image classification algorithms: Parallelepiped, Minimum Dis-
tance, Maximum Likelihood, and Back-Propagation Neural Net-
work. The results evince that the proposed algorithm consistently
outperforms the traditional algorithms in all the experiments and,
hence, provides an effective option for processing remote-sensing
imagery.

Index Terms—Artificial immune systems (AIS), artificial
intelligence, pattern recognition, remote sensing, supervised
classification.

I. INTRODUCTION

ARTIFICIAL immune systems (AIS) have recently drawn
increased attention from the artificial intelligence com-

munity. AIS were inspired by the human immune system and
have been exploited for a wide spectrum of applications [1],
[2]. Some application examples include pattern recognition [3],
[4], intrusion detection [5], [6], clustering [7], and optimization
[8]. An artificial immune network (AIN), which is derived
from the immune network theory [9], [10], is an important
and effective model of AIS. Several AIN models have been
proposed and have been successfully applied to data analysis
and pattern recognition, such as the multiple-valued immune
network (MVIN) [11], [12], parallel distributed processing
model [13], AIN (aiNet) model [2], and artificial immune net
(AINE) model [7]. In spite of the successful application of
AIN in several fields, few applications of current AIN models
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have been reported in the area of remote sensing. This may be
attributed to the high computational costs arising from current
AIN models [14] that render them unfit for remote-sensing
image classification. There being too many user-defined pa-
rameters in current AIN models is another obstruction. To
overcome these shortcomings, this paper seeks to develop a
novel algorithm based on MVIN for supervised multispectral
remote-sensing image classification.

In previous works, we have successfully applied AIS to un-
supervised and supervised remote-sensing image classification
[15], [16]. In [15], an unsupervised artificial immune classifier
(UAIC) was proposed and was successfully applied for the
classification of remote-sensing imagery. The key mechanisms
and concepts embodied in UAIC include antibody population
evolution, clonal selection, and memory cell development. In
[16], a novel classifier, i.e., the Resource-Limited Classification
of Remote Sensing Images (RLCRSI), was developed for mul-
tispectral/hyperspectral classification based on the paradigm of
improved AIS, i.e., a resource-limited AIS. RLCRSI is capable
of performing data reduction by generating a representative set
of memory cells for classification. The above algorithms were
based only on the immunological properties such as clonal se-
lection theory and immune memory and did not utilize immune
network theory. Being different from the previous work, the
multiple-valued immune network classifier (MVINC) not only
utilizes the novel immune theory, which is the immune network
theory, but also applies the multiple-valued logic theory to
improve the algorithm (see also Section II for details).

A multispectral/hyperspectral image is a collection of several
monochrome images of the same scene, each taken with a dif-
ferent sensor. Each image is referred to as a band. Multispectral/
hyperspectral images are most commonly used in image
processing for remote-sensing applications. Satellites usually
take several images from frequency bands in both the visual and
nonvisual parts of the spectrum. Classification is a central issue
in multispectral/hyperspectral image processing, and various
supervised algorithms such as Parallelepiped (PP), Minimum
Distance (MD), Maximum Likelihood (ML), and K-nearest
neighbor (K-NN) have been designed and implemented in the
past for classifying multispectral/hyperspectral data in a pixel-
wise manner [17], [18]. The PP classifier [17], also known
as the box decision rule, is probably the simplest among the
aforementioned algorithms. This algorithm employs the ranges
of values within the training data to define regions within
a multidimensional data space. The MD classifier [19] uses
the central values of the spectral data that form the training
data set to assign pixels to information categories. The K-NN
algorithm [17] assumes that pixels close to each other in the

0196-2892/$25.00 © 2007 IEEE



3958 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 45, NO. 12, DECEMBER 2007

feature space are likely to fall in the same class and assigns
the classification of the majority vote among the K-NNs in the
training samples to the pixel in question. As is well known,
the ML classifier is a powerful classification technique based
on the maximum likelihood decision rule. The rule assumes
that both the training data and the classes themselves usually
present multivariate normal frequency distributions [17]. To
improve on classification performance, many new classifiers
have also been devised for multispectral/hyperspectral remote-
sensing images such as artificial neural networks [20], [21],
genetic algorithms (GAs) [22]–[25], support vector machines
(SVMs) [26], fusion techniques [27], decision tree [28], and
object-based classification [29].

Unlike the aforementioned classification algorithms, the pro-
posed algorithm based on an MVIN is a self-learning highly
robust algorithm. Specifically, the novelty of the algorithm lies
in the following aspects: 1) it is a data-driven self-adaptive
method as it can adjust itself to the data without any explicit
specification of functional or distributional form for the un-
derlying model; 2) it is viewed as a universal functional ap-
proximator since it can approximate any function with arbitrary
accuracy; and 3) it inherits multiple-valued logic computational
capability and the memory property of an MVIN and can
quickly recognize the same or similar antigen at different times.
The proposed algorithm has been examined with various mul-
tispectral images, and it is demonstrated that this algorithm can
achieve high classification accuracy, thus providing an effective
option for multispectral remote-sensing image classification.

The remainder of this paper is structured as follows.
Section II gives an overview of the human immune system and
the MVIN model. Section III describes the proposed method
and algorithm in detail, whereas Section IV illustrates the
performance of the proposed algorithm as compared to the tra-
ditional ones. Section V analyzes the sensitivity of the proposed
algorithm in relation to its main parameters. Finally, Section VI
concludes this paper.

II. MVIN MODEL

The human immune system, which is a complex system
of cells, molecules, and organs, symbolizes an identification
mechanism capable of perceiving and combating dysfunction
from our own cells and the action of exogenous infectious
microorganisms. This immune system protects the body from
infectious agents such as viruses, bacteria, fungi, and other
parasites. Any molecule that can be recognized by the adaptive
immune system is known as an antigen. The basic component
of the immune system is the lymphocytes or the white blood
cells. Lymphocytes exist in two forms—in B cells and T cells.
Antibody molecules are synthesized and secreted by B cells,
and that process is regulated by T cells. The T cells can either
help or suppress the B cells’ response to a stimulus [30]. In the
immune response network model, a simplified system has been
proposed for immunology in body fluid [11]. First, an antigen
is taken in by a macrophage or some other cells with antigen
processing capability. The antigen is partially digested and
appears on the surface of these cells. The process and these cells
are called antigen presentation and antigen-presenting cells,

respectively. The antigen is recognized by T cells’ receptors and
activated to secrete interleukin. The interleukin is the second
signal to B cells, the B cells being stimulated by the inter-
leukin. The stimulated B cells break up and divide into antigen
synthetic cells (plasma cells). In the plasma cells, antibody
molecules are synthesized in great volume and secreted. If a
sufficient quantity of antibody and lymphocytes are composed,
we regard the immune system as being affected.

On the other hand, parts of the divided B cells are preserved
as they are in the immune system and become immune memory
cells. If the same antigens invade once again, the memory cells
rapidly divide into plasma cells, and a large quantity of anti-
bodies is generated in a very short period. The above process
is called the secondary immune response of immune systems.
After the antigen is excluded, the interleukin is secreted by
suppressor T cells to suppress the generation of the antibody.
Then, the immune response is finished [11].

There are several AIN models in the literature based on
the immune response and immune network theory. The AINE
model brought improvements for more general data analysis
[7]. Recently, a new AIN model, namely aiNet, was proposed
to solve data-clustering problems [2]. These AIN models make
no distinction between the lymphocytes and their surface mole-
cules (antibodies), and only B cells are considered in these
models, that is, T cells are neglected. An MVIN model is
formulated, which is different from the above model, and based
on the analogy with the interaction between B cells and T cells
in the immune system. Therefore, the model has a property that
resembles quite well the immune response.

There are several cells involved in the immune mechanism.
The principle cells involved in the interaction are antigen (Ag),
antibody (Ab), B cells (B), help T cells (TH ), and suppressor
T cells (TS). The model defines the input–output relation of a
cell: Input → Cell → Output. The implementation of the model
is detailed as follows [11].

1) Antigen (Ag), as shown in the following equation, is
taken in by B cells and appears on their surface, namely
antigen presentation:

Ag → B → Antigen Presentation.

2) The antigen presentation, as shown in the following equa-
tion, is recognized by the help of T cells TH , which
secrete the interleukin IL+ that activates the immune
response:

Antigen Presentation → TH → IL+.

3) The interleukin IL+, as shown in the following equation,
becomes the second signal of the B cells (the B cells
divide into plasma cells, then synthesize the antibodies
(Ab), and finally secrete the Ab):

IL+ → B → Ab

where B represents both B cells and plasma cells.
4) If the antigen is excluded by the antibodies, then the

immune response is finished. At the same time, the model
must modify the concentration of antibodies. That is, the
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Fig. 1. Immune response network.

suppressor T cells TS are stimulated to secrete inhibitory
interleukin IL− that suppresses the immune response. If
the generation of the antibodies stops, then the immune
response is finished. That is,

Ab → TS → IL−.

The immune response process mentioned above can be illus-
trated as an immune network, as shown in Fig. 1.

The immune system model has three important features [11].
First, if Ag and Ab are defined as an input and an output,
respectively, the output is not determined by the B cells, but
by the interaction between B cells and TH cells. Second, the TS

cells that adjust the subsystem constructed by B cells and TH

cells also play an important role in the immune system because
they can suppress the immune response to avoid the infinite
increase of antibodies. Third, every cell describes a set of the
cells in Fig. 1; for example, Ag represents a set of the antigens.

Based on the immune response network and multiple-valued
logic theory [31], the MVIN model was proposed. MVIN
extends the binary representations to multiple-valued repre-
sentation. Whereas a binary immune network employs binary
representations for weight and memory pattern update modules,
MVINs substitute multiple-valued representations for these
modules. For instance, MVIN learns to classify inputs by a
multiple-valued set of features from 0 to (m − 1) indicating
the extent to which each feature is present, where m rep-
resents the maximal value of multiple-valued features. The
simulations show that, aside from the advantages of fewer cat-
egories, improved memory pattern, and good memory capacity,
MVIN produces a stronger noise immunity than the binary
network [11].

Similar to AIS (e.g., MVIN), the GA is also a heuristic
algorithm. However, their underlying mechanisms and methods
of evolutionary search significantly differ in terms of inspi-
ration, vocabulary, and fundamentals. Although GA uses a
vocabulary borrowed from natural genetics and is inspired by
the Darwinian evolution theory, AIS makes use of the immuno-
logical terminology to describe antigen–antibody interactions
and cellular evolution in immune systems. Their evolutionary
search differs from the viewpoints of inspiration, vocabulary,
and fundamentals [32]. In addition, AIS inherits the memory
property of human immune systems to build a memory cell
population and can quickly recognize the same or similar
antigens at different times [2], [33].

III. MVINC OF REMOTE-SENSING IMAGERY

A new supervised classifier based on the MVIN model,
namely the MVINC, is developed in this paper for classification
of multispectral imagery. A multispectral remote-sensing data
set X = {x1, x2, . . . , xNb}T through Nb bands is observed
and mapped to a finite rectangular lattice W = {(i, j)) : 1 ≤
i ≤ Nrow, 1 ≤ j ≤ Ncol}, where Nrow and Ncol represent the
row number and column number, respectively. T denotes the
transpose of a matrix.

Being different from the original MVIN, and to guarantee the
convergence of MVINC, we add a tolerance threshold ρ as
the stopping criterion of the training process. In MVINC, when
the maximal error between the input antigen and memory cells
is in the range of ρ, the antigen was recognized. Otherwise,
MVINC evolved until the criterion was satisfied.

The implementation of MVINC includes the following six
steps:

1) selection of the regions of interest (ROI) or samples;
2) input antigen;
3) initialization of MVINC;
4) evolution of MVINC;
5) output trained MVINC (through these five steps, the

trained MVINC is used to classify a multispectral remote-
sensing image into step 6);

6) classification.
The aforementioned steps are detailed as follows.

A. Selection of ROI or Samples

Based on the characteristics of the remote-sensing image
(e.g., texture, spectra) and application purpose, ROI or samples
can be selected from an image or a spectral library. In the
MVINC, the training samples are represented by the set of
antigens AG, and the number of classes C is equal to the
number of ROI obtained in the process.

B. Input Antigen

Input pattern Ag is input to the B cells’ group (e.g., N
cells). Each dot (binary or multiple-valued one) of the input
pattern is input to its responding B cell layer. In MVINC, N
represents the dimension of input data, that is, in the task of
remote-sensing image classification, it equals the number of
multispectral image bands.

C. Initialization of MVINC

Step 1: Initialization of Antigen Presentation and Interleukin
IL+ Secretion: When the input Ag pattern is input to its re-
sponding B cell layer, it is presented to all TH cells (e.g., M
cells). The above process is named as antigen presentation and
is shown in Fig. 2. M represents the number of TH cells. In the
classification of remote-sensing imagery, the value of M may
be the multiple of the number of classes, such as M = C.

To a multiple-valued network, we can obtain M in
N -dimensional weight vectors W j as follows:

W j = W1j ,W2j , . . . ,WNj (1)
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Fig. 2. Weight connections from B cell to TH cells.

where j = 1, 2, 3, . . . ,M . The weight vector describes the
stimulation level of an input Ag pattern to different TH cells.
To avoid activating a cell that has never been memorized, it is
necessary to initialize the weights from B cells to TH cells to be
small values. This can be achieved by the following equation:

Wij <
L

L − 1 + N
(2)

where L is a constant larger than 1, i = 1, 2, . . . , N , N is the
number of B cells or input pattern elements, and for remote-
sensing image classification, N is the number of image bands.
For example, for L = 2

Wij(0) =
1
N

<
2

1 + N
. (3)

For a multispectral remote-sensing image with six bands,
N = 6 and Wij(0) = (1/6) < (2/7).

Then, the TH cell takes the sum of the weighted input, and
only the TH cell that receives the strongest stimulus (called
antigen presentation) secretes the interleukin IL+. Namely, the
TH cells’ group can be considered as a competition network.

Step 2: Initialization of Memory Pattern: After the inter-
leukin IL+ generates the corresponding weight vector W , it
feeds back to B cells again and obtains a feedback vector T Hj ,
as shown in Fig. 3, as

T Hj = (t1j , t2j , . . . , tNj) (4)

where tij = 0,1,2, . . . ,m−1, i = 1,2, . . . , N , j = 1,2, . . . ,M .
m represents the multiple-valued features. MVINC applies the
learning theory based on the set of multiple-valued features, in
which different features are indicated from 0 to m − 1. For the
classification of multispectral imagery, m can be replaced with
the maximal gray value of the image. For instance, if m = 255,
255 represents the maximum digital number (DN) value of the
image.

The feedback vector is called the memory pattern or
multiple-valued memory pattern. In MVINC, to apply MVIN
to classify the remote-sensing imagery, the vector can be
represented by a real number vector. In initialization, for an
m-valued pattern, we can set

tij(0) = m − 1 (5)

for all i, j.

Fig. 3. Weight connections from TH cell to B cells.

Step 3: Antibodies Generation: After the feedback from the
TH cell layer to the B cell layer, the errors between the input
pattern vectors and the memory pattern vectors are known as the
antibodies and are input to the TS cell layer. With a multiple-
valued pattern representation, the antibodies can be described
by the following equation as

Abi = |Agi − tij | (6)

where i = 1, 2, . . . , N .
Step 4: Stopping Criterion for the Training Procedure: In

the TS cell layer (suppressive layer), the maximum errors
(antibodies) between input pattern and memory pattern Abmax

are obtained first, i.e.,

Abmax = max{Abi, i = 1, 2, . . . , N}. (7)

MVINC compares Abmax with the tolerance threshold ρ in
the following:

Abmax < ρ. (8)

If the value of Abmax is less than the tolerance threshold
ρ, then the antigen has been recognized by MVINC. The next
antigen will be input and trained by MVINC. Otherwise, the
next process will be carried out.

D. Evolution of MVINC

If the value of Abmax is beyond the tolerance threshold ρ,
then the inhibitory interleukin IL− is secreted from the TS cells.
The inhibitory interleukin tends to suppress the TH cells that
secreted the excitatory interleukin. Thus, a new competition in
the TH cells’ group occurs, and MVINC will evolve.

Step 1: Update of Weights From B Cell Layer to TH Cell
Layer: The update of the jth TH cell (THk) is as follows:

Wij(k + 1) =
tij(k) · Agi

‖T Hj‖ ∗ ‖Ag‖ + ε
(9)

‖Ag‖ =

√√√√ N∑
i=1

|Agi|2 (10)

‖T Hj‖ =

√√√√ N∑
i=1

|tij |2 (11)

where i = 1, 2, . . . , N , tij are the feedback weights from TH

cells to B cells. Agi is the input pattern. k represents the training
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Fig. 4. Flowchart for MVINC.

or iteration number of the immune network, such that tij(k)
is the value of tij in the kth training or iteration process.
ε is a small positive constant, and the empirical values of ε is
0.00001. The operator (·) represents the inner product of the
multiple-valued memory pattern vector and the input pattern
vector.

Step 2: Update of Feedback Weights From TH Cell Layer to
B Cell Layer: By a real-time modified function, the feedback
weights from TH cell layer to B cell layer can be updated using
the following equation:

tij(k + 1) =
|tij(k) + Agi|

2
(12)

where i = 1, 2, . . . , N , 
x� is the smallest integer equal to
or larger than x. Equation (12) averages the different parts
between the memory pattern vector and the input pattern vector.
In the other words, if an input pattern vector is classified into
a category, the memory pattern vector of the category will be
updated to express some features of both the memory pattern
and the input pattern.

Step 3: Rejudging Stopping Criterion: Calculate the anti-
bodies between input pattern and memory pattern. If the
maximum antibodies Abmax is larger than a given tolerance
threshold ρ, then the process repeats the evolutional process,
i.e., Section III-D, until the stopping criterion is met. Otherwise,
jump to Section III-E.

E. Output Trained MVINC

Once the aforementioned process has been carried out, train-
ing on this particular antigen is completed. The next antigen in
the training set or ROI is then selected, and the training process
proceeds in Section III-D. This process continues until all
antigens in all ROI have been trained in the proposed algorithm.
Through the five steps above, the trained MVINC is used to
classify a multispectral remote-sensing image in Section III-F.

F. Classification

The classification process is as follows. First, the classified
multispectral remote-sensing imagery is input to MVINC as
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Fig. 5. Wuhan TM image, October 1998 RGB (3, 2, 1).

Fig. 6. Spectra of five classes.

TABLE I
LAND-COVER CLASSES AND ASSOCIATED NUMBERS

OF PIXELS USED IN EXPERIMENT 1

antigen. Second, the TH cells accept the input of weights and
take the sum of the weighted input as the stimulation level. The
input Ag pattern is classified to the class of the strongest TH ,
which has the highest stimulation level.

The flowchart for MVINC is shown in Fig. 4.

IV. EXPERIMENTS AND ANALYSIS

The proposed MVINC and traditional supervised algorithms
were all implemented using Visual C++ 6.0 and tested on dif-
ferent types of remote-sensing images. Two experiments were
conducted to test performances. Consistent comparisons were

Fig. 7. Supervised classification images for Wuhan TM image. (a) PP.
(b) MD. (c) ML. (d) BP (one hidden layer). (e) SVM. (f) MVINC. (g) The
image for test field in Experiment 1.

also carried out between MVINC and PP, MD, ML, Back-
Propagation Neural Network (BP), and SVM in all the exper-
iments. The configuration for BP (using one hidden layer) is
as follows: the number of input neurons = the number of input
features, the number of hidden layer neurons = twice the num-
ber of input layer neurons, the learning rate = 0.25, the inertia
factor = 0.95, and the stopping rule of the training phase =
1000 epochs. The options for SVM are as follows: the kernel
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TABLE II
COMPARISON OF SIX METHODS OF CLASSIFICATION IN EXPERIMENT 1

type is the radial basis function and Gamma in Kernel
Function = 0.167.

A. Experiment 1: Wuhan TM Image

The first experiment was performed using a 30-m resolution
multispectral Landsat Thematic Mapper (TM) image (1024 ×
1024 pixels) of Wuhan City, which was acquired on October 26,
1998 (Fig. 5). The observed image area was expected to fall into
five classes: Yangtze River, Lake, Soil, Vegetation, and City.
Five ROI representing the five classes were selected as training
regions, and each training region had ground reference sample
points. Fig. 6 shows the spectra of the five training regions. In
Fig. 6, the X- and Y -axes represent band number of the image
and DN values of five classes, respectively. The list of classes
and the number of labeled samples for each class are given in
Table I.

In this experiment, to train and test all algorithms, the
training data set and the test data set were randomly obtained
from the labeled samples. The main parameters of MVINC
are set as follows: N = the number of bands = 6, M = the
number of classes = 5, m = the maximum DN values of the
image = 255, and ρ = 0.15.

Fig. 7(a)–(e) illustrates the classification results using PP,
MD, ML, BP (using one hidden layer), and SVM, respectively.
Fig. 7(f) illustrates the classification result using MVINC. To
evaluate the classification accuracy, a test field map is provided
in Fig. 7(g) based on ground truth data obtained by field
sampling. To test these algorithms, approximately half of the
available samples were used as the training data set, with the
other half serving as the test data set.

The visual comparisons of the six supervised classifications
in Fig. 7 show varying degrees of accuracy in pixel assignment.
The six classifiers have similar classification results in the
Yangtze River class. However, it is hard for PP to differentiate
between other classes; for example, it is hard to differentiate
between vegetation and city, and there are many unknown
pixels (black pixels) in its classified image [Fig. 7(a)]. MD
can be confused by vegetation. ML can distinguish between
vegetation and other classes better; however, it misclassifies
the lake pixels to other classes. BP and SVM are competent in
the classification, although some city pixels are misclassified as
vegetation. However, MVINC achieves the best visual accuracy
in the vegetation class and also satisfactorily performs for the
soil and city classes.

Two statistics—Overall Accuracy (OA) and Kappa coef-
ficient [17] based on the confusion matrix—are utilized to

Fig. 8. Wuhan MODIS image.

evaluate the classification performances of different algorithms.
Columns in a confusion matrix typically represent the reference
data, and rows represent the classification data. OA is simply
the sum of the pixels correctly classified (e.g., the diagonal
elements), divided by the total number of samples in the com-
parison. The Kappa coefficient can be defined in terms of the
confusion matrix as follows:

Kappa =
N

∑r
k=1 xkk −

∑r
k=1(xk+ × x+k)

N2 −
∑r

k=1(xk+ × x+k)
(13)

where r is the number of rows in the matrix, xkk is the number
of observations in row i and column j, xk+, and x+k are the
marginal totals for row i and column j, respectively, and N is
the total number of observations.

Table II lists the results of the comparisons between the
ground truth data and classified images obtained by six classi-
fiers: MVINC, PP, MD, ML, BP, and SVM. From Table II, it is
apparent that the MVINC produces better classification results
than the other classifiers. The details are as follows: MVINC
exhibits the best overall classification accuracy of 89.88%, i.e.,
the best percentage of correctly classified pixels among all the
testing pixels, with a gain of 36.26%, 10.56%, 7.84%, 3.36%,
and 2.75% over the PP, MD, ML, BP, and SVM algorithms,
respectively. MVINC improves the Kappa coefficient from
0.4205 to 0.8625, an improvement of 0.442.
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Fig. 9. Spectra of four classes.

TABLE III
LAND-COVER CLASSES AND ASSOCIATED NUMBERS

OF PIXELS USED IN EXPERIMENT 2

The main reason for the comparatively high accuracy
achieved by MVINC is that ML is based on the assumption that
both training data and the classes themselves display multivari-
ate normal (Gaussian) frequency distributions [17]. However,
due to the complexity of ground substances and the diversity
of disturbance, data from remotely sensed images often do
not strictly adhere to this rule, which, therefore, leads to the
relatively poor performance. BP and SVM may achieve better
accuracy; however, they require too much computational cost.
In particular, the learning convergent velocity of BP is slow,
and BP’s accuracy is significantly influenced by the training
data. In addition, the selection of learning factor and inertial
factor, which are usually determined by experience, affects the
convergence of the BP neural network. By contrast, MVINC
is a kind of data-driven self-adaptive method, which can adjust
itself to the data without any explicit specification of functional
or distributional form for the underlying model. MVINC can
approximate any function with arbitrary accuracy by a uni-
versal functional approximation. In addition, MVINC adopts
an immune response model and multiple-valued logic theory,
rendering it flexible in modeling the complex relationships
between classes. These enable MVINC to achieve the best
accuracy.

B. Experiment 2: Wuhan MODIS Image

In this experiment, a Moderate Resolution Imaging Spec-
troradiometer (MODIS) image (acquired on April 2, 2002)
of an area also in Wuhan was used. The level 1B data sets
include the 500-m reflectance data for channels 3, 4, 6, and
7. These four spectral channels are ordered by ascending
wavelengths at 0.46–0.48, 0.55–0.57, 1.63–1.65, and 2.11–
2.16 µm, respectively. The classifications were performed using
four ROI, namely, water, cloud, city, and vegetation. Fig. 8
shows the experimental MODIS image, and Fig. 9 shows the
spectra of the four training regions. In Fig. 9, the X- and

Fig. 10. Supervised classification images for Wuhan MODIS image. (a) PP.
(b) MD. (c) ML. (d) BP (one hidden layer). (e) SVM. (f) MVINC. (g) The
image for test field in Experiment 2.

TABLE IV
COMPARISON OF SIX METHODS OF CLASSIFICATION IN EXPERIMENT 2

Y -axes represent the band number of the image and the DN
values of four classes, respectively. The list of classes and
the number of labeled samples for each class are given in
Table III.
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In the classification calculation, the main parameters of
MVINC are set as follows: N = the number of bands = 4,
M = the number of classes= 4, m= the maximum DN values
of the image, and ρ = 0.15.

Fig. 10(a)–(f) illustrates the classification results using PP,
MD, ML, BP, SVM, and MVINC, respectively. To evaluate the
classification accuracy, a test field map is provided in Fig. 10(f)
based on the ground truth data obtained by field sampling.
To test these algorithms, approximately half of the available
samples were used as the training data set, with the other half
serving as the test data set.

As shown in Fig. 10, PP has many unclassified pixels.
ML, MD, and BP cannot recognize the city class well. In
particular, MD misclassifies many pixels of other classes to
the cloud class. SVM is confused by vegetation, which is
classified to other classes such as the city class. MVINC is
more capable of differentiating the city class from other classes;
for example, the pixels of city in the top left corner of the
image are correctly classified. Therefore, MVINC can achieve
better results visually. By contrast, and in addition, Table IV
shows that the MVINC classifier produces better classifications
than the traditional classifiers. MVINC improves the overall
classification accuracy from 67.44% using PP to 92.29% (im-
proved by 24.85%), and the Kappa coefficient from 0.6122
to 0.9058. These evince that MVINC is a very competent
classifier, which makes it promising for remote-sensing image
classification.

V. SENSITIVITY ANALYSIS

MVINC has a parameter defined by users, namely the tol-
erance threshold ρ as the stopping criterion of the training
process. It significantly influences the convergence speed and
the computational complexity of the proposed algorithm.

To analyze the effects of setting this parameter when running
MVINC, the Wuhan TM image, as shown in Fig. 5, was classi-
fied using different values for this parameter. ρ was assumed
to have the following values: ρ = {0.05, 0.1, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4}. The results are presented in Fig. 11.

As shown in Fig. 11, the smaller the ρ value, the higher the
OA. The reason is as follows: the smaller ρ means the MVINC
will tolerate fewer errors between input pattern and memory
pattern. However, more computational time may be needed for
the proposed algorithm to converge.

VI. CONCLUSION

A novel supervised algorithm based on the immune network
theory, namely the MVINC, was proposed in this paper. The
MVINC was successfully applied for classification of remote-
sensing images. To guarantee the convergence of MVINC, the
algorithm adds a tolerance threshold ρ as the stopping criterion
for the training process. In addition, MVINC is capable of
performing an immune theory with memory using the multiple-
valued logic theory and immune theory for classification.

A series of experiments was carried out to test the per-
formance of MVINC using different remote-sensing images.
Compared with traditional classifiers, MVINC has consistently
demonstrated its better performance. In the two experiments,

Fig. 11. OA in relation to ρ.

the average classification accuracy was improved from 60.53%
using PP, 79.34% using MD, 84.46% using ML, 87.2% using
BP, and 89.55% using SVM, to 91.09%; and the Kappa co-
efficient improved from 0.5164 using PP, 0.7379 using MD,
0.8044 using ML, 0.8377 using BP, and 0.8699 using SVM,
to 0.8842. This evinces that the proposed method is not only
able to classify multispectral remote-sensing imagery but is also
a very competent classifier for data processing involving high
volumes. Consequently, MVINC provides an effective option
for remote-sensing image classification. In our future work,
AIS and MVINC will be further explored for more extensive
remote-sensing applications.
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