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Abstract—A new stochastic search strategy inspired by the
clonal selection theory in an artificial immune system is proposed
for dimensionality reduction of hyperspectral remote-sensing im-
agery. The clonal selection theory is employed to describe the
basic features of an immune response to an antigenic stimulus
in order to meet the requirement of diversity in the antibody
population. In our proposed strategy, dimensionality reduction is
formulated as an optimization problem that searches an optimum
with less number of features in a feature space. In line with this
novel strategy, a feature subset search algorithm, clonal selection
Feature-Selection (CSFS) algorithm, and a feature-weighting al-
gorithm, Clonal-Selection Feature-Weighting (CSFW) algorithm,
have been developed. In the CSFS, each solution is evolved in
binary space, and the value of each bit is either 0 or 1, which indi-
cates that the corresponding feature is either removed or selected,
respectively. In CSFW, each antibody is directly represented by
a string consisting of integer numbers and their corresponding
weights. These algorithms are compared with the following four
well-known algorithms: sequential forward selection, sequential
forward floating selection, genetic-algorithm-based feature se-
lection, and decision-boundary feature extraction using the hy-
perspectral remote-sensing imagery acquired by the Pushbroom
Hyperspectral Imager and the Airborne Visible/Infrared Imaging
Spectrometer, respectively. Experimental results demonstrate that
CSFS and CSFW outperform other algorithms and hence provide
effective new options for dimensionality reduction of hyperspec-
tral remote-sensing imagery.

Index Terms—Artificial immune system (AIS), artificial intelli-
gence, clonal selection, dimensionality reduction, feature selection,
remote sensing.

I. INTRODUCTION

ADVANCES in hyperspectral remote sensing have pro-
vided an effective alternative for monitoring the Earth’s

surface. Hyperspectral sensors offer a dense sampling of the
spectral range of the sensor, thus facilitating a better discrimina-
tion among similar ground-cover classes than traditional multi-
spectral scanners with low spectral resolution [1]. However, the
use of hyperspectral images is limited by the lack of reliable and
effective data-analysis techniques for the voluminous amount of
data. As hyperspectral sensors acquire images in very narrow
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spectral channels, the resulting high-dimensional feature sets
may contain redundant information. As a result of this, the
number of features given as input to a classifier can be reduced
without a significant loss of information [2].

Dimensionality reduction in a high-dimensional data space
can decrease the computational cost and may also improve
the accuracy during the classification process [3], [4]. For
instance, when a supervised classifier is applied to classifica-
tion problems in high-dimensional feature spaces, the Hughes
phenomenon [5] can be observed; that is, when the number of
input features exceeds a given limit for a fixed training sample
size, the classification accuracy will decrease.

Given a set of measurements, dimensionality reduction can
be achieved in essentially two ways: feature extraction and
feature selection [6]. Feature extraction is to find the transfor-
mation from a higher dimension to a lower dimensional feature
space with most of the desired information content preserved
[7], [8]. This transformation may be a linear or nonlinear
combination of the original variables and may be supervised
or unsupervised. The commonly used feature-extraction tech-
niques include principal component analysis [6], independent
component analysis [9], discriminant analysis feature extrac-
tion [2], and decision-boundary feature extraction (DBFE) [8],
[10]. Specifically, DBFE is based on the fact that the vector
normal to the decision boundary of a classifier for a given
pattern classification problem contains information useful for
discriminating between classes. The DBFE was extended to
multiclass problems by combining the decision-boundary fea-
ture matrix of each pair of classes [8], [10].

In contrast to the feature-extraction techniques, feature se-
lection is used to identify the variables that do not contribute to
the classification process. In a discrimination problem, those
variables that do not contribute to class separability would
be neglected. Thus, the task of feature selection is to select
a subset from a larger number of features or variables used
in classification while maintaining an acceptable classification
accuracy [6], [11].

In general, feature selection requires a search strategy and
criterion functions [2], [6], [12]. The search algorithm gen-
erates and compares possible feature-selection solutions by
calculating their criterion function values as a measure of the
effectiveness of each considered feature subset. The feature
subset with the best criterion function value is given as the
output of the feature-selection algorithm. This paper focuses on
the search algorithm. More details about criterion functions can
be found in [2], [6], and [12].

Different feature-selection techniques including optimal and
suboptimal search algorithms have been proposed. Optimal
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search algorithms, such as an exhaustive search and branch and
bound method [13], identify the selected subset that consists
of a predefined number of features and evaluates the best
subset according to the criterion function. However, when the
number of features is larger than a few tens, for example, in
hyperspectral space, the optimal search algorithms are not fit
for use because of their heavy computational costs. In such a
case, suboptimal algorithms will be considered for searching
an appropriate feature subset.

The simplest suboptimal search strategy employs the sequen-
tial forward-selection (SFS) and sequential backward-selection
(SBS) techniques [6]. SFS and SBS achieve the best feature
subset with the prefixed number of features by adding to or
removing from the current feature subset one feature at a
time. However, both algorithms do not allow the features to
be reselected once they have been selected. The plus-l-minus-r
algorithm [14] applies a more complex sequential search strat-
egy to overcome this problem. This technique is, however,
limited by its difficulty in selecting the values of l and r in order
to obtain the best feature subset. Built on SFS and SBS, the
sequential forward floating selection (SFFS) and the sequential
backward floating selection (SBFS) methods [15] have evolved
into the two most widely used sequential search methods. These
enhance the standard SFS and SBS by dynamically changing
the number of features included in SFFS or removed in SBFS at
each step and allowing the reselection of the features included
or removed at the previous step.

Besides these two methods, many new search algorithms
have been devised for dimensionality reduction, in pace with
the rapid development in soft computing. Among them, genetic
algorithm (GA) is a representative that has been applied to
feature selection [16]–[19]. In this algorithm, a feature subset
is represented as a “chromosome” in the form of a binary
string whose length is equal to the number of features. A “0”
bit in the chromosome indicates a discarded feature, while a
“1” bit suggests a selected feature. During each iteration of
the algorithm, a number of possible solutions are generated by
means of genetic operators, such as crossover and mutation,
guided by a fitness measure or criterion function. The algorithm
seeks to evolve an optimal solution to the feature-selection
problem. Another stochastic search algorithm, namely, simu-
lated annealing, was also attempted for feature selection [20].

This paper will add to the literature by proposing a new
stochastic search strategy for hyperspectral feature selection.
This strategy is based on the clonal selection algorithm (CSA)
[21], [22] in artificial immune systems (AISs). AISs, which
are inspired by the immune systems, use the immunological
properties to support a wide range of applications [23]–[25].
CSA, derived from the clonal selection theory [26], [27], is an
effective method of AISs and successfully applies to pattern
recognition, multimodal optimization, and classification [21],
[22], [24], [28]. Nonetheless, applications of CSA to hyper-
spectral remote sensing have rarely been reported, owing to
the complexity of hyperspectral imaging data. In this paper,
two new feature-selection algorithms, namely, a subset search
algorithm and a feature-weighting algorithm, have been devel-
oped based on the clonal selection theory for feature selection
in hyperspectral space. These algorithms are able to find the

optimal solution in feature space using immune operators, such
as clone, selection, mutation, and replacement. The algorithms
have been tested and compared with the traditional algorithms
using the hyperspectral remotely sensed images acquired by
the Pushbroom Hyperspectral Imager (PHI) and the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS). Experimen-
tal results evince that the proposed algorithms outperform the
traditional methods and thus provide an effective option to
hyperspectral dimensionality reduction.

The rest of this paper is organized as follows. Section II
describes the clonal selection theory that underlies the CSA.
Section III reviews the shape-space model in immune systems
and the basic CSA. Sections IV and V present the proposed
new feature-selection algorithm and the feature-weighting al-
gorithm, respectively. In Section VI, the PHI and AVIRIS
hyperspectral data used for experiments are described and the
experimental results are provided. Section VII discusses the
main features of the proposed methods, and finally, Section VIII
concludes this paper.

II. CLONAL SELECTION THEORY

The human immune system, a complex system of cells,
molecules, and organs, symbolizes an identification mechanism
capable of perceiving and combating dysfunction from our
own cells and the action of exogenous infectious microorgan-
isms. This immune system protects the body from infectious
agents such as viruses, bacteria, fungi, and other parasites.
Any molecule that can be recognized by the adaptive immune
system is known as an antigen. The basic component of the
immune system is the lymphocytes or the white blood cells.
Lymphocytes exist in two forms, B cells and T cells. These two
types of cells are rather similar, but they differ in relation to how
they recognize antigens and to their functional roles. B cells are
capable of recognizing antigens free in solution, while T cells
require antigens to be presented by other accessory cells. They
have distinct chemical structures and produce many Y-shaped
antibodies from their surfaces to kill the antigens. Antibodies
are molecules attached primarily to the surface of B cells with
an aim to recognize and cope with antigens [29].

In order to clarify how an immune response is mounted
when a nonself antigenic pattern is recognized by a B cell,
the clonal selection theory has been developed [26], [27]. The
main features of the clonal selection theory are concerned with
the following: 1) proliferation and differentiation on simulation
of cells with antigens; 2) generation of new random genetic
changes, expressed subsequently as diverse antibody patterns,
by a form of accelerated somatic mutation; and 3) estimation
of newly differentiated lymphocytes carrying low-affinity anti-
genic receptors. These will be utilized in this paper.

The principle can be detailed as follows. When a B-cell
receptor recognizes a nonself antigen with a certain affinity, it is
selected to proliferate and produce antibodies in high volumes.
The antibodies are soluble forms of the B-cell receptors that are
released from the B-cell surface to cope with the invading non-
self antigens. Antibodies bind antigens leading to their eventual
elimination by other immune cells. Proliferation in the case of
immune cells is asexual, and it is a mitotic process in which the
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Fig. 1. Clonal selection principle.

Fig. 2. Diagrammatic representation of shape space.

cells divide themselves. During reproduction, the B-cell clones
undergo a hypermutation process where the antigen stimulates
the B cell to proliferate and mature into terminal antibody-
secreting cells that are named plasma cells. The process of
cell division generates a clone. In addition to proliferation and
differentiation into plasma cells, the activated B cells with
high antigenic affinities are selected to become memory cells
with long life spans. These memory cells circulate through the
blood, lymph, and tissues. When exposed to a second antigenic
stimulus, memory cells commence to differentiate into plasma
cells capable of producing high-affinity antibodies, which are
preselected for the specific antigen that had stimulated the
primary response [22]. Fig. 1 shows the clonal selection, ex-
pansion, and affinity maturation processes.

III. CLONAL SELECTION ALGORITHM

In immune systems, to quantitatively describe the interac-
tions between immune cell molecules and antigens, Perelson
and Oster [30] introduced the concept of shape space. Based
on this, it is then generally agreed that a complete repertoire is
attainable within the known parameters of immune recognition
[24], [31], [32].

The notion of shape space is that the degree of binding be-
tween a receptor and a molecule that it binds, a ligand, generally
involves short-range noncovalent interactions based on electro-

static charge, hydrogen binding, and van der Waals interactions.
Repertoire completeness is the ability of the immune systems
to recognize all antigens and can be represented by the shape-
space model [33]. As can be seen from Fig. 2, within the shape
space, the immune systems of a given person can be represented
by a 2-D circle of volume V . It is assumed that each paratope
(•) specifically interacts with all epitopes (×) that are within
a small surrounding region, characterized by the parameter ε
and called a recognition region of volume Vε. Because each
antibody can recognize all epitopes within a recognition region
and an antigen might present some different kinds of epitopes,
a finite number of antibodies can recognize an almost infinite
number of points into the volume Vε [34]. Hence, the repertoire
of antibodies can be deemed to be complete if they cover the
entire volume of the shape space.

Based on the clonal selection theory and the shape-space
model of the immune system, De Castro and Von Zuben [21],
[22] developed the CSA. It has been applied to support pattern
recognition and solve multimodal optimization problems. The
algorithm can be described as follows.

1) Randomly initialize a population of individuals M .
2) For each input pattern P , present it to the population M

and determine its affinity with each element of M .
3) Select n of the best highest affinity elements of M and

clone these individuals proportionally to their affinity
with the antigen. The higher the affinity, the higher the
number of copies and vice versa.

4) Mutate all these copies with a rate proportional to their
affinity with the following input pattern: the higher the
affinity, the smaller the mutation rate.

5) Add these mutated individuals to the population M and
reselect the m of these maturated individuals to be kept
as memory cells of the systems.

6) Repeat steps 2) to 5) until a certain criterion is met.

Similar to CSA, GA is also a heuristic algorithm. How-
ever, their underlying mechanisms and methods of evolutionary
search significantly differ in terms of inspiration, vocabulary,
and fundamentals. While GA uses a vocabulary borrowed from
natural genetics and is inspired by the Darwinian evolution
theory, CSA makes use of the shape-space formalism, along
with immunological terminology, to describe antigen–antibody
interactions and cellular evolution in immune systems. GA per-
forms a search through genetic operators including reproduc-
tion, crossover, and mutation, while CSA performs its search
through the mechanisms of somatic mutation and receptor
editing, balancing the exploitation of the best solutions with
the exploration of the search space. The CSA maintains a
diverse set of local optimal solutions, while the GA tends to
polarize the whole population of individuals toward the best
one. This occurs mainly owing to the selection and reproduction
schemes adopted by the CSA [described in step 3)]. Essentially,
their coding schemes and evaluation functions are not different,
but their evolutionary search differs from the viewpoint of
inspiration, vocabulary, and fundamentals [34]. In addition,
CSA inherits the memory property of human immune systems
to build a memory-cell population and can recognize the same
or similar antigen quickly at different times [24], [35].
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Fig. 3. Ten-dimensional feature space reduced to a 6-D subset space.

IV. PROPOSED CLONAL SELECTION

FEATURE SELECTION ALGORITHM

A feature-selection algorithm based on the clonal selection
theory, i.e., CSFS, was developed in this paper for dimen-
sionality reduction of hyperspectral imagery. A hyperspectral
remote-sensing data set X = {x1, x2, . . . , xNb}T through Nb

bands is observed and mapped to a finite rectangular lattice
W = {(i, j)) : 1 ≤ i ≤ Nrow, 1 ≤ j ≤ Ncol}, where Nrow and
Ncol represent the row number and column number, respec-
tively. T denotes the transpose of a matrix. The set xt =
{xt

11, . . . , x
t
NrowNcol

: t = 1, . . . , Nb} denotes the data taken at
the tth wavelength, where xt

ij ∈ (0, . . . , G− 1), and G is the
number of observable gray levels. A classified image is de-
noted as ω = {ωij : 1 ≤ i ≤ Nrow, 1 ≤ j ≤ Ncol}; each pixel
of which will be assigned to one of the c classes. That is,
ωij ∈ (1, 2, . . . , c), where c is the number of classes, is assumed
to be known.

The objective of feature selection is to reduce the number of
features utilized to characterize patterns by selection. This is
achieved through optimization in terms of a criterion function
F (e.g., maximization of a separability index or minimization
of an error bound), a good subset S of Nm features, with
Nm < Nb, without significantly degrading the performance of
the resulting classifier

S = {s1, s2, . . . , sNm}T, S ⊂ X .

The criterion function F is computed by using a preclassified
reference set of patterns (e.g., training set). The value of F
depends on the features included in the subset S, F = F (S).

To apply the CSA to hyperspectral feature selection, the
entire set of features is represented by a discrete binary space.
In this search space, each point represents an individual band.
The value “0” in the ith position indicates that the ith feature
is not included in the corresponding feature subset; the value
“1” in the jth position indicates that the jth feature is included
in the corresponding feature subset. For example, in a simple
case with Nm = 6 and Nb = 10 features, the binary vector
b = (1, 1, 0, 1, 0, 1, 0, 1, 0, 1) indicates that the feature subset
has the first, second, fourth, sixth, eighth, and tenth features.
The process is shown in Fig. 3.

The criterion function F can be viewed as a scalar function
defined in the discrete binary space. Without loss of gener-
ality, there is a case in which the criterion function has to
be maximized. Thus, the dimensionality reduction problem of
selecting Nm out of Nb features can be suitably formulated as
an optimization problem to find the global maximum of the
criterion function.

To describe CSFS, the following notations are used.
1) Let AB denote the set of antibodies and ab represent a

single antibody where AB = {ab1, ab2, . . . , abN} and
N is the number of the antibody population. Each anti-
body abi = (ab1

i , ab
2
i , . . . , ab

Nb
i )(i = 1, 2, . . . , N) rep-

resents a solution to the feature-selection problem in a
binary space; Nb is the number of bands.

2) Let F denote the criterion function of an antibody, F =
F (S). Because each abi can describe a binary space or
subset space, F = F (abi).

3) Let mc denote the memory cell. mc indicates the best
antibody with the highest criterion function value in each
iteration, and mc is a candidate solution.

The CSFS algorithm consists of the following steps.

A. Initialization

The first antibody population AB including N antibodies is
generated with the value of each bit in abi ∈ AB assigned with
1 or 0 according to the number of selected subset features Nm.
The value 0 in the ith position indicates that the ith feature is
not included in the corresponding feature set; the value 1 in
the jth position indicates that the jth feature is included in the
corresponding feature set

abt
i =

{
1, if t = k
0, otherwise

i=1, 2, . . . , N ; t=1, 2, . . . , Nb

(1)

k = Irandom(1, Nb) (2)
Nb∑
t=1

abt
i = Nm (3)

where N is the number of the initial antibody population, Nb is
the number of features or bands, and function Irandom(1, Nb)
returns a random integer value within the range [1, Nb] using
a uniform distribution. Equation (3) indicates that the sum of
the selected features is equal to Nm, a user-defined feature
subset size.

B. Cycle of the Generations

After initialization, the simulation of the clonal selection
process begins. One generation after another is created, and
each must prove its affinity to the criterion function. In each
iteration, a number of possible solutions are generated by means
of applying the immune operators such as clone, mutation,
and selection in a stochastic process guided by an affinity
measure. The algorithm seeks to evolve an optimal solution to
the problem.
1) Calculation of Affinity: According to the initial antibody

population, the affinity of all N ab’s in the antibody population
AB is calculated using the criterion function F = F (abi). As
a criterion function, the proposed algorithm uses the average
Jeffries–Matusita (JM) distance [12], [36], [37], which is a
common class separability index utilized by the remote-sensing
community for feature selection in multiclass problems and is
a saturating transform of the Bhattacharyya distance (BD) [38].
Assuming that there exist c classes with Gaussian distributions,
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in order to simplify the computation of the BD, the average JM
distance of a feature subset is calculated by using the following
equation:

JM =
c∑

m=1

c∑
n=1

PmPnJMmn (4)

JMmn =
√

2(1 − e−BDmn) (5)

BDmn =
1
8
(Mm −Mn)T

(
Σm + Σn

2

)−1

× (Mm −Mn) +
1
2

ln

( ∣∣Σm+Σn

2

∣∣√
|Σm||Σn|

)
(6)

where c is the number of classes, m and n are the two classes
being compared, Pm is an a priori probability of the mth class,
Σm and Mm are the covariance matrix and mean vector of
the mth class, respectively, T is the transposition function, and
|Σm| is the determinant of Σm.

The JMmn distance between classes m and n is an affinity/
distance measure of separability. The smaller the JMmn dis-
tance, the more difficult it is to separate the classes and vice
versa.

Assuming that JMmm = 0, the average JM distance can be
written as (7), and the proposed algorithm uses this equation as
the affinity function

F (abi) = JM =
2

c(c− 1)

c−1∑
m=1

c∑
n=m+1

PmPnJMmn. (7)

2) Selection: From AB, the “n” highest affinity antibodies
are selected to compose a new set AB{n} of high-affinity
antibodies, and the highest affinity memory cell (mc) is found.
3) Clone: After receiving antibody individuals closer to the

solution, the next generation should mainly be derived from the
better fitting individuals. Thus, the n selected ab’s are cloned
based on their antigenic affinities, generating the clone set C.
The total number of clone-generated Nc is defined as follows:

Nc =
n∑

i=1

round(β ·N) (8)

where β is a multiplication factor, N is the total number of an-
tibodies, and round(·) is the operator that rounds its argument.

This step draws the evolutionary process closer to the goal. It
raises the average affinity value and gives the following steps a
good chance to further move toward the solution.
4) Mutation: Provide each ab in the clone set C with the

opportunity to produce mutated offspring C∗. The higher the
affinity, the smaller the mutation rate. To adaptively determine
the mutation rate according to the affinity of each ab, the
process is as follows.

First, for each abi ∈ AB, normalize its affinity F (abi) into
the range [0, 1]

F ′(abi)=
F (abi)−min (F (abi))

max (F (abi))−min (F (abi))
, i=1, 2, . . . , Nc.

(9)

Fig. 4. Real-value mutation (pm represents mutation rate).

Then, let each abi have the chance to mutate; the mutation
rate is adaptively calculated as

pm = exp(−2∗F ′ (abi)) (10)

where pm is the mutation rate of each ab, two is the empirical
value to control the decay, and F ′(abi) is the affinity according
to (9).

In (10), the range of the mutation rate is [0, 1].
Finally, the cloned antibodies are mutated with probab-

ility pm.
The mutation process is as follows.

1) An integer string B consisting of integer numbers to
represent the corresponding selected features is obtained
by decoding the antibody abi. For example, as for Nm =
5 and Nb = 10, a binary string 1011001010 corresponds
to the integer string B = {1, 3, 4, 7, 9}.

2) For the integer string B, the mutation procedure and the
function mutation (B) with mutation rate pm are defined
in Fig. 4. The maximum and minimum of each element
in the integer string B are Nb and one, respectively. In the
mutation process, the value of each element is not equal to
any other elements existing in the string B. The function
random (minimum, maximum) generates a random real
value using a uniform distribution in the range from
the minimum to the maximum. Function ∆(Ite, u) is
defined as

∆(Ite, u) = u
(
1 − r(1−

m
Ite )

λ)
(11)

where m is the iteration number, Ite is the maximal
iteration number, r is a random value within the range
[0, 1], and λ is a parameter to decide the nonconforming
degree.

For example, the integer string B in step 1) mutates to
the integer string B′ = {2, 3, 5, 9, 10}.

3) For the mutated integer string B′, the corresponding
binary string is encoded as 0110100011.
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Fig. 5. Process for the CSFS.

This step is crucial in the proposed algorithm. It generates
random changes of single features of the individual solutions.
The value of these changes can be found at the criterion func-
tion calculation within the next-generation cycle. This helps
avoid local maximums and produces new properties of mutated
antibodies that can remain if they are successful.

To avoid chaotic development and to maintain the best
ab’s for each clone during evolution, one original ab for
each clone without mutation during the maturation process is
kept; else, it would destroy the positive development of the
previous step and disable any major development toward the
solution.
5) Recalculation of Affinity: Calculate the affinity F ∗(abi)

of the matured clones C∗.
6) Reselection: From the mature clone set C∗, reselect the

n ab’s with the highest affinity to replace the n ab’s with
the lowest affinity in AB. Select the highest affinity ab in
C∗ to be a candidate memory cell mccandidate. If the affin-
ity of mccandidate is higher than the memory cell mc, then
mccandidate will replace mc and become a new memory cell.
7) Displace: In order to replace the d lowest affinity ab’s

from AB, d new antibodies are produced by a random
process. This step may increase the diversity of the antibody
population.

C. Stopping Condition

When the number of iterations reaches the user-defined
number or the change of memory cell between two consecutive
iterations is less than a change threshold, terminate the execu-
tion of the algorithm. Otherwise, return to step B until the stop
criteria are satisfied.

Finally, the proposed algorithm outputs the value of the
memory cell and obtains the subset space through transforma-
tion from the binary space.

The flowchart for CSFS is shown in Fig. 5.

V. PROPOSED CLONAL SELECTION

FEATURE-WEIGHTING ALGORITHM

In the earlier CSFS algorithm for finding a feature subset,
the antibody population is evolved in the binary space, and the
value of each bit is 0 or 1. In addition to this, this algorithm is
extended to allow linear feature extraction and hence evolves
into a feature-weighting algorithm, namely, CSFW. In CSFW,
each antibody is directly represented by a string consisting
of integer numbers and their corresponding weights, allowing
independent linear scaling of each feature. The following is a
set of feature vectors with Nb features:

X =
{
x1, x2, . . . , xNb

}T
.

For the defined number of the subset features Nm, the CSFW
produces a transformed set of vectors

S ′=
{
w1y1, w2y2, . . . , wNmyNm

}T
yj ∈ X, j=1, 2, . . . , Nm

where wi is a weight associated with feature i. Each feature
value is scaled by the associated weight prior to training, test-
ing, and classification. For example, with Nm = 5 and Nb =
10, the first, third, fifth, sixth, and tenth features are selected,
and the corresponding weights are w1, w2, w3, w4, and w5,
respectively. This process is shown in Fig. 6.

CSFS is modified as follows to support feature weighting.

1) In the initialization step, the length of each antibody
string is equal to 2∗Nm. The first Nm string represents
the selected feature, and the latter string describes the
corresponding weight of each selected feature. The value
of each bit in abi ∈ AB is generated as follows:

abt
i =

{
Irandom(1, Nb), t = 1, 2, . . . , Nm

random(0, 1), t = Nm + 1, Nm + 2, . . . , 2∗Nm

i = 1, 2, . . . , N
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Fig. 6. Ten-dimensional feature space transformed into feature-weighting
space.

Fig. 7. Mutation sample in CSFW.

where function Irandom(1, Nb) returns a random integer
value within the range [1, Nb], and the function random
(0, 1) generates a random real value as a feature weight
using a uniform distribution in the range [0, 1].

2) In the mutation step, the real-value mutation is applied.
The mutation procedure is also defined in Fig. 4 as CSFS.
Specifically, the maximum and minimum of the weights
are zero and one, respectively. A mutation process is
shown in Fig. 7. In this figure, the original antibody
string represents that the first, third, fifth, sixth, and tenth
features are selected, and the corresponding weights are
0.1, 0.2, 0.05, 0.85, and 0.37, respectively. After muta-
tion, the new feature-weighting space is obtained. In the
new space, the second, third, seventh, eighth, and ninth
features are selected, and the corresponding weights are
changed to 0.3, 0.42, 0.07, 0.13, and 0.84, respectively.

VI. EXPERIMENTS AND ANALYSIS

Experiments have been conducted to test the performance of
the proposed CSFS and CSFW algorithms by using different
hyperspectral remote-sensing imagery.

Consistent comparisons among CSFS, CSFW, and the fol-
lowing traditional dimensionality reduction algorithms: SFS,
SFFS, GA (as in [16]), and DBFE, were performed. The
optimal feature-selection algorithms, such as exhaustive search
and branch and bound method, were not used as they are
not considered suitable in terms of computational efficiency
for hyperspectral imagery. The estimation of feature selection/
extraction quality for these algorithms was done by means
of the classification accuracy of the hyperspectral imagery
acquired by the PHI and the AVIRIS.

A. Experiment 1: Xiaqiao PHI

The data set used in this experiment was acquired from the
Xiaqiao test site, a mixed agricultural area in China, using

Fig. 8. Xiaqiao PHI image RGB (70, 40, 10).

TABLE I
LAND-COVER CLASSES AND ASSOCIATED NUMBERS

OF PIXELS USED IN EXPERIMENT 1

the PHI. PHI image (340 × 390 pixels) of 80 bands were
tested, and their spectral ranges were from 0.417 to 0.854 µm.
Fig. 8 shows the experimental PHI image cube. The ground-
truth spectral data were collected by field spectrometer SE590.
Nine representative classes, i.e., corn1, corn2, corn3, vegetable-
sweet potato, vegetable-cabbage, soil, float grass, road, and
water, were considered. The list of classes and the number
of labeled samples for each class are given in Table I, and
Fig. 9 shows the reflectance curves of the above nine land-cover
classes. The field map is shown in Fig. 10 based on the ground-
truth data.

The primary running parameters that should be provided
by users for feature selection were the number of iterations,
the antibody population size N , the number of highest affinity
ab, the n [see also step 3)], the clone multiplication factor β
[see also (8)], and the number of displace antibody d [see also
step 7)]. To facilitate the comparison of the proposed algorithm
with the other traditional algorithms, n is set to N and d to
zero. The affinity function is determined by the JM distance
in (7). The values of the parameters were set as follows:
Population size = 50, Maximum iterations = 100, n = 50,
β = 0.02, d = 0.
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Fig. 9. Reflectance of nine land-cover classes.

Fig. 10. Field map of the Xiaqiao site.

In order to test these algorithms, approximately half of the
available samples were used as the training data set, whereas
another half of the available samples served as the test data set.

An important characteristic of the algorithms is their execu-
tion time. In our case, it is in the form of processor ticks (1 ms)
spent in the user space. Fig. 11 shows the execution times with
different feature subset sizes provided by the five algorithms.
For every number of selected features from 2 to 79, SFS is the
fastest, GA and CSFS cost similar time, and CSFW is slower
than CSFS because it adds the process of selecting weights.
While the number of selected features is over 67, SFFS is the
slowest. Otherwise, CSFW is the slowest.

Fig. 12 shows the values of the criterion function computed
on the subsets in the training process provided by CSFS, CSFW,
SFS, SFFS, and GA to different numbers of selected features
from 2 to 79. All algorithms were described by the relationship
curves between the predefined number of features in the subset
and the corresponding JM distance. To better present the exper-
iment results, the JM distance of SFS was used as a reference,
i.e., the values of the criterion functions provided by SFFS,
GA, CSFS, and CSFW are divided by the corresponding values
obtained by SFS. For example, if the CSFS and SFS provided
the same JM distance values, the value on Fig. 12 is equal to
one. DBFE does not have the corresponding JM distance value
as it is based on the decision-boundary feature matrix.

For a more detailed comparison among the following dif-
ferent algorithms: SFS, SFFS, GA, CSFS, and CSFW, all
the labeled training and test samples were classified using
the dimensionality reduction algorithms with the increase of

Fig. 11. Execution times required by different algorithms in Experiment 1.

Fig. 12. Values of the criterion function for different feature subset sizes
provided by different algorithms in Experiment 1.

selected feature numbers. The maximum-likelihood (ML) clas-
sifier was employed in this case. Figs. 13 and 14 show the
overall accuracy for training data and test data, respectively. For
convenience of description, SFS-ML denotes the ML classifier
with the feature subsets provided by the SFS algorithm. Other
notations can be inferred by analogy.

As can be found from Figs. 12–14, the SFFS and the pro-
posed CSFS and CSFW algorithms perform better than SFS for
all the selected subset features. Comparing the results of CSFS
and CSFW with those of SFFS, the two proposed algorithms
make some improvements over SFFS. In particular, when the
number of selected features is below 50, the improvement is
greater, and CSFW for three features achieves the most signif-
icant improvement. The highest overall accuracies achieved by
CSFS-ML and CSFW-ML using the test data are 93.07% and
93.75%, respectively. A comparison between the two proposed
algorithms shows that CSFW usually provides better results
than those provided by CSFS; however, the differences can be
neglected when the number of selected features is larger than
50. Specifically, the Hughes phenomenon can be observed as
follows: when the number of input features exceeds around 50,
the classification accuracy decreases.
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Fig. 13. Classification accuracy achieved by the following five algorithms:
SFS, SFFS, GA, CSFS, and CSFW, using the training data in Experiment 1.

Fig. 14. Classification accuracy achieved by the following five algorithms:
SFS, SFFS, GA, CSFS, and CSFW, using the test data in Experiment 1.

Using GA with the population size of 50 for 100 generations,
several different settings of the crossover rate (ranging from 0.6
to 0.9) and the mutation rate (ranging from 0.01 to 0.2) were
attempted to select the feasible rates. When the crossover and
the mutation rates were approximately equal to 0.85 and 0.09,
a better result can be obtained. However, the results provided
by GA do not outperform those provided by SFS when the
number of selected features is larger than two. One reason can
be that the simple GA was used in the experiment; it seemed
to present a tendency toward premature convergence in the
experiment, with most runs reaching their peak by around the
tenth generation and failing to make further improvements after
that. However, if more values of GA’s parameters are tested
(e.g., population size) or a more extensive and time-consuming
search is used in the solution space, it may lead to better results
[18], [19].

CSFS, CSFW, and GA are heuristic feature-selection/
extraction algorithms, and they obtain the optimal solution
through maximization of the criterion function. However, there

Fig. 15. Test classification accuracy achieved by CSFW and DBFE using the
image with 40 bands in Experiment 1.

is an essential difference in the evolutionary process between
GA and CSFS or CSFW. Unlike GA, which is simulating a
genetic evolution process, CSFS and CSFW, inspired by the
immune systems and clonal selection theory, are self-adaptive
methods that can adjust themselves to the data without any
explicit specification of functional or distributional form for
the underlying model. In these two algorithms, the additional
clone process may increase the average affinity value, extend
the search space, and provide the mutation steps a good chance
to move closer to the optimal solution. Therefore, CSFS and
CSFW may have the better ability to find the better results.
Inspiringly, between the two proposed algorithms, CSFW, as
a feature-weighting algorithm, exhibits a better potential than
the feature-selection CSFS algorithm when they are applied to
the same case in dimensionality reduction.

DBFE is an effective feature-extraction algorithm. To make
a better use of such an algorithm, the number of bands was
reduced by the simple prereduction method considering one
band every two. That is, the number of the selected image’s
bands used by DBFE is equal to 40 in this experiment. Fig. 15
shows the test accuracy provided by DBFE-ML and CSFW-ML
to different numbers of selected features from 2 to 40 in the
image with 40 bands.

As shown in Fig. 15, DBFE-ML obtains a better result than
CSFW-ML when the number of selected features ranges from 7
to 23. The best accuracies achieved by CSFW-ML and DBFE-
ML using the test data are 92.02% and 91.9%, respectively. In
addition, the result of DBFE may improve if a more effective
prereduction algorithm, such as uniform band combination, is
employed. In addition, when the number of selected features is
increased from 39 to 40, the test accuracy provided by CSFW-
ML decreases from 92.02% to 91.75%.

In order to assess the sensitivity of CSFS and CSFW to the
land-cover classes, several experiments were performed with
different numbers of classes using the feature subset size of
20. In Figs. 16 and 17, the numbers of classes were two, three,
four, five, six, seven, eight, and nine, respectively, i.e., the first
two classes, three classes, four classes, five classes, six classes,
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Fig. 16. JM distance versus the number of classes for the two proposed
algorithms using 20 features.

Fig. 17. Execution time (seconds) versus the number of classes for the two
proposed algorithms using 20 features.

seven classes, eight classes, and nine classes of the labeled data
set, respectively.

As can be observed from Fig. 16, CSFW makes improve-
ments over CSFS for the different number of classes. CSFW
can obtain the maximum of the JM distance, 1.41421 [see also
(7)] for two classes, whereas the JM distance provided by CSFS
is 1.410179. Noteworthily, there is a sharp decrease of JM
distance provided by the two algorithms when the number of
classes changes from two to three. As can be observed from
Fig. 9 by analyzing the reflectance of nine land-cover classes,
this is due to the fact that the added new class, corn3, is very
similar to corn1, whereas corn1 and corn2 have better classes
separability and are easy to be classified when the number of
classes is equal to two. With the increase of the number of
classes, the class separability becomes more complex. When
the number of classes varies from five to nine, the JM distance
provided by CSFW makes much more improvement over those
provided by CSFS. The reason for this is that CSFW adjusts
adaptively to the weights of features in the evolution process to
obtain better solutions.

Fig. 18. Indian Pine AVIRIS Image RGB (57, 27, 17).

Fig. 17 shows the execution times for the different classes
provided by CSFS and CSFW. Different with Fig. 12, the
measurement unit used is second rather than millisecond in
Fig. 12 for the sake of displaying the results better. As can be
seen from Fig. 17, CSFW has a sharp increase of computation
time from eight classes to nine classes. To the other classes, the
two proposed algorithms cost similar time.

From the previous discussion, it can be concluded that CSFS
and CSFW are both competent algorithms for dimensionality
reduction and that CSFW may have better potential than (or
at least as well as) CSFS when applied to the same case in
dimensionality reduction.

B. Experiment 2: Indian Pine AVIRIS

The image data used in this experiment refer to the agri-
cultural area of Indian Pine in the northern part of Indiana
[39], [40]. The image (145 × 145 pixel) was acquired
by the AVIRIS in June 1992 and was downloadable from
the Web site (http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/
documentation.html). The data set was composed of 220 spec-
tral channels, and their spectral ranges were from 0.4 to 2.5 µm
in approximately 10-nm bandwidths. Fig. 18 shows the experi-
mental AVIRIS image. The ten most representative land-cover
classes, i.e., Corn-notill (C1), Corn-min (C2), Grass/Pasture
(C3), Grass/Trees (C4), Hay-windrowed (C5), Soybeans-notill
(C6), Soybeans-min (C7), Soybeans-clean (C8), Woods (C9),
and Bldg-Grass-Tree drives (C10), were considered. The list of
classes and the number of labeled samples for each class are
given in Table II, and Fig. 19 shows the reflectance of the above
ten land-cover classes. The field map is shown in Fig. 20 based
on the ground-truth data. The crop canopies were about 5% of
the coverage, the rest being soil covered with the residues of
the previous year’s crops. The three different levels of tillage
indicating large, moderate, and small amounts of residue were
referred as no till, minimum till, and clean till, respectively [39].

In this experiment, the method to select the training and test
data set is the same with that of Experiment 1: approximately
half of the available samples were used as the training data
set, whereas another half of the available samples served as
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TABLE II
LAND-COVER CLASSES AND ASSOCIATED NUMBERS

OF PIXELS USED IN EXPERIMENT 2

Fig. 19. Reflectance of ten land-cover classes.

Fig. 20. Field map in Experiment 2.

the test data set in the experiment. The values of the primary
parameters were set as follows: Population size = 50,
Maximum iterations = 100, n = 50, β = 0.02, and d = 0.

The execution time is shown in Fig. 21, and SFS runs the
fastest. GA, CSFS, and CSFW require similar computation
time. SFFS is faster than GA, CSFS, and CSFW for the number
of selected features below 25, whereas, for the larger number
of features, over 37, SFFS is the slowest. For the DBFE used in
the experiment, the most time-consuming operation is related to
the calculations of the decision-boundary feature matrix. DBFE

Fig. 21. Execution times required by different algorithms in Experiment 2.

Fig. 22. Values of the criterion function for different feature subset sizes
provided by different algorithms in Experiment 2.

took approximately 10 min to obtain the decision-boundary
feature matrix.

Fig. 22 shows the values of the criterion function computed
on the subsets in the training process provided by SFS, SFFS,
GA, CSFS, and CSFW. As in Fig. 12, the ratio of JM distance
was used for the y-axis. For a more detailed verification of
the above results, the set of the labeled samples was classified
using the five algorithms: SFS-ML, SFFS-ML, GA-ML, CSFS-
ML, and CSFW-ML. Figs. 23 and 24 show the comparative
results using the overall accuracy for training data and test data,
respectively.

As can be seen from Fig. 22, SFFS, CSFS, and CSFW
make some improvements over SFS for the number of selected
features below 24, whereas, for the larger number of features,
differences can be ignored. The improvement for six features
is the most significant. In addition, CSFS and CSFW have a
greater improvement than SFFS when the number of selected
features is changed from 2 to 12 and when CSFW exhibits
a better potential than CSFS. As for GA, when the crossover
and the mutation rates are approximately equal to 0.8 and 0.1,
a better result can be obtained. However, the results provided by
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Fig. 23. Classification accuracy achieved by the following five algorithms:
SFS, SFFS, GA, CSFS, and CSFW, using the training data in Experiment 2.

Fig. 24. Classification accuracy achieved by the following five algorithms:
SFS, SFFS, GA, CSFS, and CSFW, using the test data in Experiment 2.

GA do not outperform those provided by SFS when the number
of selected features is larger than two.

It is observed from Figs. 23 and 24 that the CSFW-ML
and CSFS-ML classifiers produce better classification results
not only on the training data but also on the test data than
traditional algorithms, such as SFS-ML, SFFS-ML, and GA-
ML. SFS-ML and SFFS-ML obtain similar results for different
numbers of selected features. As can be seen from Fig. 23, the
overall accuracy of the training data provided by CSFS-ML and
CSFW-ML is over 90%, when the number of selected features
is larger than 27 and 26, respectively, whereas SFS-ML, SFFS-
ML, and GA-ML require 30, 29, and 37 features to arrive at the
same value, respectively. Using the test data in Fig. 24, CSFS-
ML and CSFW-ML only require 42 and 41 features to arrive at
the 90% accuracy, whereas SFS-ML, SFFS-ML, and GA-ML
require 43, 43, and 56 features, respectively.

To utilize DBFE better, the water absorption bands (104–108,
150–163, 220) have been discarded first. Then, the number
of bands was reduced by the simple feature-selection method

Fig. 25. Test classification accuracy achieved by CSFW and DBFE using the
image with 100 bands in Experiment 2.

considering one band every two. That is, the number of the
selected image’s bands used by DBFE is equal to 100 in
this experiment. Fig. 25 shows the test accuracy provided by
DBFE-ML and CSFW-ML to the different numbers of selected
features from 2 to 60 in the image with 100 bands.

As shown in Fig. 25, DBFE-ML obtains a better result than
CSFW-ML when the number of selected features is larger than
16. The best accuracies achieved by CSFW-ML and DBFE-ML
using the test data are 90.44% and 90.5%, respectively. The
experiment shows that DBFE-ML slightly outperforms CSFW-
ML; however CSFW-ML is an easier way for dimensionality
reduction as it does not need the prereduction process, such as
from 220 to 100 bands in this experiment.

The above analysis of the experimental results clearly shows
that CSFW and CSFS fare the best among all the algorithms
tested for dimensionality reduction of hyperspectral remote-
sensing imagery.

VII. SENSITIVITY ANALYSIS OF CSFS AND CSFW

CSFS and CSFW have two important parameters that are sig-
nificantly influenced by the JM distance and the computational
complexity. They are as follows:

1) d: the number of displace antibodies;
2) β: the multiplication factor of clonal antibody.

In order to analyze the effects of these parameters when
running CSFS and CSFW, the labeled data set of the Xiaqiao
PHI images, with 80 bands and 20 features, was tested with
different parametric values. It is noted that the AVIRIS data set
can be tested in a similar way.

A. Sensitivity in Relation to Parameter d

To be consistent with other traditional algorithms, d was
set to zero in the aforementioned experiments (Section VI).
However, when d is larger than zero, the proposed CSFS and
CSFW may increase the diversity of the antibody population
to improve the performance of JM distance. In order to study
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Fig. 26. Sensitivity of CSFS and CSFW in relation to d.

the sensitivity of CSFS and CSFW in relation to d, the pa-
rameters other than d were set as the same as Experiment 1.
Specifically, the number of selected features is 20 in the ex-
periment, and d is assumed to have the following values: d =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Fig. 26 shows the sensitivity of
CSFS and CSFW in relation to the parameter d by comparing
with the JM distance provided by the two proposed algorithms.

As shown in Fig. 26, the JM distance provided by CSFS
increases when the value of d ranges from zero to five, whereas
the JM distance decreases when it is larger than five. The
JM distance provided by CSFS reaches a minimum, 1.39817,
when the value of d is ten. Similarly, CSFW increases the JM
distance when the value of d is changed from zero to three,
and it can reach a maximum, 1.3993, when the value of d
is three, while the JM distance decreases after the value of
d increases. These results imply that CSFS and CSFW will
achieve a better solution when d is in the appropriate range
than when d is equal to zero. However, when d exceeds the
range, JM distance may decrease. The reason for this is as
follows. The appropriate value of d can increase the diversity
of the antibody population to avoid the local optimum, but
when the value is too large, d new displace antibodies produced
by a random process will destroy the evolution capability of
the original antibody population. Based on our experience, d
typically ranges between zero and five.

B. Sensitivity in Relation to Parameter β

To evaluate the sensitivity of CSFS and CSFW with respect
to β, other parameters were kept the same as Experiment
1, and β was assumed to have the following values: β=
{0.02, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}.

As shown in Fig. 27, the higher the β value, the faster the
convergence. However, the computational cost per generation
increases linearly with β because the number of antibody pop-
ulation increases linearly as indicated by (8). Furthermore, the
value of β is of importance to the CSFS and CSFW algorithms
in maintaining diversity of the population because β determines
the number of cloning antibody used to extend the search
space and gives the mutation a good chance to proceed further

Fig. 27. Sensitivity of CSFS and CSFW in relation to β.

toward the solution. Based on our experience and experiments,
β typically ranges between 0.02 and 0.3.

VIII. CONCLUSION

Based on AIS and clonal selection theory, this paper pro-
posed a new search strategy for dimensionality reduction of
hyperspectral remote-sensing images. In line with this strategy,
a feature-selection algorithm, CSFS, has been developed. Cen-
tral to CSFS is antibody population evolution, clonal selection,
and memory-cell development. In CSFS, the clone process
may raise the average affinity value, extend the search space,
and provide the mutation a good chance to move closer to
optimum. The mutation step is critical to CSFS as it helps
escape local optimums and produces new properties of mutated
antibodies that can remain if they are successful. In this way,
CSFS can obtain an optimum in the feature space. Moreover, a
feature-weighting algorithm, CSFW, has also been developed.
In this paper, each antibody is directly represented by a string
consisting of integer numbers and their corresponding weights,
allowing independent linear scaling of each feature. Albeit lin-
ear coefficients are obtained by CSFW, the relationship between
the input and output features need not necessarily be linear.
The transformation of features in CSFW can be used with the
feedback from the criterion function in searching the maximal
JM distance.

The experimental results in this paper consistently show that
the proposed CSFS and CSFW provide better results than the
traditional SFS and SFFS algorithms, as well as the latest
genetic feature-selection algorithm. In the two experiments
using different hyperspectral remotely sensed images, CSFS
and CSFW are able to arrive at better results with less number
of features and achieve higher classification accuracy of over
90% for the training data set and the test data set in conjunction
with the ML classifier. This evinces that CSFS and CSFW
are competent for dimensionality reduction of hyperspectral
remote-sensing images and that they exhibit a better alternative
to the standard SFS and SFFS methods for feature selection of
hyperspectral data. Although the computation times of CSFS
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and CSFW are, respectively, higher than SFS and SFFS, the
execution times of both proposed algorithms are quite accept-
able. Moreover, it may be reduced by selecting the appropri-
ate parameters. In the comparison between the two proposed
algorithms, CSFW exhibits a better potential than the feature-
selection CSFS algorithm when they are applied to the same
case in dimensionality reduction. Compared with DBFE, after
prereduction, DBFE achieves slightly better results than CSFW
in the two experiments, yet CSFW is an easier way as it does not
require prereduction. The sensitivity analysis of the parameters
in CSFS and CSFW demonstrates that these two algorithms
allow users to improve the effectiveness of the algorithms and
reduce the computational complexity. In particular, when the
value of displace rate d is larger than zero, the two proposed
algorithms may make some improvements and obtain better
performance.

Our future work will explore further immunological proper-
ties and models, and we intend to investigate immune networks
to develop a comprehensive immune recognizing system for
hyperspectral remote-sensing imagery. In addition, the CSFS
and CSFW may be used for preprocessing of feature extraction,
e.g., with DBFE, to improve the classification accuracy.
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