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Abstract—The artificial immune network (AIN), a computa-
tional intelligence model based on artificial immune systems
inspired by the vertebrate immune system, has been widely uti-
lized for pattern recognition and data analysis. However, due to
the inherent complexity of current AIN models, their applica-
tion to multi-/hyperspectral remote sensing image classification
has been severely restricted. This paper presents a novel su-
pervised AIN—namely, the artificial antibody network (ABNet),
based on immune network theory—aimed at performing multi-/
hyperspectral image classification. To construct the ABNet, the
artificial antibody population (AB) model was utilized. AB is the
set of antibodies where each antibody (ab) has two attributes—its
center vector and recognizing radius—thus each ab can recognize
all antigens within its recognizing radius. In contrast to the tra-
ditional AIN model, ABNet can adaptively obtain these two pa-
rameters by evolving the antigens without relying on user-defined
parameters in the training step. During the process of training,
to enlarge the recognizing range, the immune operators (such as
clone, mutation, and selection) were used to enhance the AB model
to find better antibody in the feature space, which may recognize
as much antigen as possible. After the training process, the trained
ABNet was utilized to classify the remote sensing image, exhibit-
ing superior learning abilities. Three experiments with different
types of images were performed to evaluate the performance
of the proposed algorithm in comparison to other supervised
classification algorithms: minimum distance, Gaussian maximum
likelihood, back-propagation neural network, and our previously
developed artificial immune classifiers—resource-limited classifi-
cation of remote sensing image and multiple-valued immune net-
work classifier. The experimental results demonstrate that ABNet
has remarkable recognizing accuracy and ability to provide effec-
tive classification for multi-/hyperspectral remote sensing imagery,
superior to other methods.

Index Terms—Artificial immune systems (AISs), image classifi-
cation, pattern recognition, remote sensing.
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I. INTRODUCTION

MAGE CLASSIFICATION is an important issue in remote

sensing and other applications [1]. The accurate classifica-
tion of remote sensing images has a wide range of uses, includ-
ing reconnaissance, assessment of environmental damage, land
use monitoring, urban planning, and growth regulation [2]. A
major distinction in image classification separates supervised
from unsupervised classification methods. Supervised classi-
fication permits higher classification accuracy to be achieved
owing to the exploitation of training samples during the learn-
ing phase, compared to unsupervised classification. In the
literature on remote sensing, a variety of different supervised
classification algorithms have been designed and implemented
based on statistical and computational intelligence frameworks
[2], [3] in the past, such as parallelepiped [2], minimum dis-
tance (MD) [4], Gaussian maximum likelihood (GML) [4],
Mahalanobis distance [5], spectral angle mapper (SAM) [6],
the k-nearest neighbor [2], [7], decision trees [8], [9], artificial
neural networks [10]-[13], the classifiers based on genetic
algorithms [14] or ant colony algorithm [15], and the recently
developed support vector machine classifier [16]-[18].

In recent years, a new intelligence theory—artificial immune
systems (AISs) [19], [20]—has also been applied to unsu-
pervised and supervised classification of multi-/hyperspectral
remote sensing images [21]-[24]. AISs inspired by their natural
counterparts have exhibited the following strengths: immune
recognition, reinforced learning, feature extraction, immune
memory, diversity and robustness, etc. In addition, they have
strong capabilities in pattern recognition by utilizing immuno-
logical properties, such as clonal selection and immune mem-
ory [25], [26]. Experimental results suggest that these artificial
immune classifiers for remote sensing imagery can yield better
results than traditional classification algorithms, such as max-
imum likelihood classifier [23], [24]. However, they often re-
quire additional user-defined parameters to update the antibody
and memory cell population. For example, the previously devel-
oped supervised artificial immune classifie—resource-limited
classification of remote sensing image (RLCRSI) [23]—relies
on the following user-defined parameters: the stimulation
threshold, total resource, and affinity threshold scalar (ATS).
The classification results are sensitive to the values of these
user-defined parameters; furthermore, experimental data need
to be used as a selection criteria for the appropriate values
incorporated in different images [23], limiting the application
of these artificial immune classifiers.
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In this paper, to reduce the number of parameters and
improve the intelligence of artificial immune classifiers, an
adaptive supervised classification algorithm based on artificial
immune network (AIN), namely, an artificial antibody network
(ABNet), is proposed to classify multi-’hyperspectral remote
sensing imagery. The proposed algorithm is designed to adap-
tively obtain the antibodies or memory cells and subsequently
classify the remote sensing image. Furthermore, in contrast
to some previous artificial immune classifiers, which are only
based on clonal selection theory and immune memory [22],
[23], the proposed classifier utilizes not only the aforemen-
tioned immunological properties but also the AIN theory. AIN
based on immune network theory [27] is an important and
effective model of AISs, including aiNet model [28], AIN
(AINE) model [29], and the dynamic AIS model [30]. It has
been applied to pattern recognition [31], optimization [32],
clustering [33], and multimodal electromagnetic problems [34].
AIN simulates the body’s adaptive learning and defense mech-
anism when exposed to invading pathogens. Based on these
underlying biological properties of AINs, the proposed ABNet
may be regarded as a self-learning highly robust algorithm for
the following reasons.

1) It can adjust itself to the data without any explicit spec-
ification of functional or distributional form. ABNet can
adaptively adjust and build up the recognizing network
that consists of the antibodies. Every antibody (ab) has
its center vector and recognizing radius and can recognize
all antigens in its recognizing radius. All training sam-
ples/antigens in the training procedure will be correctly
recognized by ABNet.

2) Fewer user-defined parameters for the underlying model.
ABNet reduces the number of the parameters due to its
ability to adaptively obtain the center vector and recog-
nizing radius of each antibody by training the samples of
interest in each class.

3) ABNet can provide a clear and direct way to construct the
classifier no matter how complex the decision boundary.
Finally, ABNet outputs the set of antibodies for each
class, where each antibody has the corresponding class
attributes. The class decision boundary can be clearly
obtained by the center vector and the radius of each
antibody.

The proposed algorithm has been tested and compared to
the traditional algorithms and the previous artificial immune
classifiers using three real multi-/hyperspectral remote sens-
ing images acquired by Landsat TM (Thematic Mapper) 7,
the Pushbroom Hyperspectral Imager (PHI), and the Airborne
visible/Infrared Imaging Spectrometer (AVIRIS). The exper-
imental results demonstrate that the proposed approach can
have remarkable classification accuracy. Moreover, it provides a
more robust artificial immune classifier with fewer user-defined
parameters.

The remaining part of this paper is organized as follows. In
Section II, we review the immune network theory. An artifi-
cial immune model, namely, the artificial antibody population
(AB) model, is presented in Section III. Section IV provides
a detailed description of the proposed AIN-based AB model
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Fig. 1. Immune network principle.

for remote sensing image classification. Section V presents
a description of the data sets and analyzes the experimental
results. Finally, conclusions are drawn in Section VI.

II. AIN

The natural immune system—made up of special cells,
proteins, and organs—protects organisms from infection with
layered defenses of increasing specificity. In the simplest form,
physical barriers prevent pathogens (called antigens ag) such
as bacteria and viruses from entering the organism. One type of
response is the secretion of antibody (ab) molecules by B cells
or B lymphocytes [35]. The clonal selection principle describes
the basic characteristics of an adaptive immune response to an
antigenic stimulus [36]. When an antigen is detected, the B cells
that recognize the antigen with best affinity will proliferate
by cloning, where affinity represents the attraction between
an antigen and an antibody. During reproduction, the B-cell
clones undergo a hypermutation process, whereby the antigen
stimulates the B cell to proliferate and mature into terminal
antibody-secreting cells—plasma cells. The activated B cells
with high antigenic affinities are selected to become memory
cells with long life spans. These memory cells guarantee a faster
response to similar antigens in the future [37].

Immune network theory was proposed by Jerne [38] in an
attempt to explain the memory-retention and learning capa-
bilities exhibited by the immune system. Unlike the clonal
selection principle, the immune network theory hypothesizes
that the immune system maintains a regulated network of cells
and molecules that maintain interactions between not only an
antibody and an antigen but also the antibodies themselves
[32]. If an antigen is recognized by an antibody ab;, then ab;
may be recognized by abs and, in turn, aby, may be recognized
by abs, forming a network of antibody interaction (Fig. 1).
Recognition among antibodies would elicit a negative response
and result in the tolerance and suppression of antibodies. In this
way, excessively similar antibodies of the same types will be
suppressed to guarantee the appropriate number of antibodies.
As a result, the immune system will achieve the final state of
stability where these highly adapted antibodies are transformed
into long-term memory antibodies. This ensures that memory
antibodies can be uniformly distributed in an antigen space.
In this way, although there are a relatively small number of
antibodies in the immune system, they can cover the entire
antigen space and recognize all antigens [32]. These immune
network principles will be utilized in this paper.
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Based on the immune network theory, several AIN
models—aiNet model [28], AIN (AINE) model [29], the
dynamic AIS model [30], etc.—have been proposed to suc-
cessfully solve a wide range of engineering problems [27],
such as data analysis and pattern recognition. However, it is
difficult to apply current AIN models to remote sensing image
classification owing to the huge data volumes associated with
remote sensing images, particularly a hyperspectral remote
sensing image comprising a large number of bands. Current
models require the storage and manipulation of a large network
of B cells or antibodies (with the number of B cells or antibod-
ies often exceeding the number of data points), which limits
their use even for medium-sized data sets [30]. An excessive
number of user-defined parameters in current AIN models are
an additional significant drawback.

In our previous work [24], we attempted to solve the afore-
mentioned stated problems by proposing the multiple-valued
immune network classifier (MVINC) based on the set of
multiple characteristics of multispectral remote sensing image
classification. MVINC builds up an immune network composed
of three layers—the antigen, the B cell, and the T cell layer—by
analogy with the interaction between B cells and T cells in the
immune system. When inputting an antigen, MVINC produces
the weighing vector to describe the stimulation level of an input
antigen pattern to different T cells. Subsequently, by applying a
function modified in real time, MVINC produces the feedback
vector from T cell to B cell layer to update the network,
called the memory pattern or multiple-valued memory pattern.
MVINC constantly trains the immune network to the samples
of regions of interest (ROIs) using the aforementioned pro-
cess, until the maximum recorded error is within the tolerance
threshold p. During the classification process, MVINC learns
to classify inputs based on a multiple set of characteristics
from 0 to (m — 1)—indicating the extent to which each one
is present—where m represents the total number of character-
istics. For the classification of multispectral imagery, m can be
replaced with the maximum grayscale value of the image (e.g.,
m = 255). It was noted that the number of the B cell layers
is equal to the number of the bands, while the number of the
T cell layers corresponds to the number of the classes, implying
that each class has only one T cell. This is in keeping with
the previous experiments suggesting that MVINC may obtain
better classification results for multispectral remote sensing
images by utilizing one T cell for each class. However, as the
number of hyperspectral remote sensing image bands is greater
than the number of spectra in multispectral remote sensing
image, complexity of data MVINC has to process is further
increased. The quality of MVINC-classified results depends on
the T cells; hence, using one T cell to represent one class is
rarely optimal. This may lead to the unsatisfactory results.

To utilize the immune network theory and overcome the
shortcomings of current immune network models, this paper
proposes an adaptive AIN model for multi-/hyperspectral re-
mote sensing image classification.

III. AB MODEL

To construct the adaptive AIN—ABNet—the AB model was
used as its basic component. In our previous work, the use of

Fig. 2.  AB model.

AB model to build up an unsupervised artificial immune clas-
sifier (UAIC) for multi-/hyperspectral remote sensing imagery
has been proposed [22]. As shown in Fig. 2, the AB model
describes the antibody population in immune systems compris-
ing memory cells (denoted by mc) and several antibodies of
the same class (denoted by ab). In the AB model, o repre-
sents the AB’s scale/radius of influence. For remote sensing
image classification, o determines the recognizing range of the
AB, whereby AB recognizes all antigens within the radius o.
Although UAIC may yield satisfactory classification results by
using the AB model based on distance threshold and distance
threshold scalar (DTS) in [22], the learning and recognizing
capacity of UAIC is sensitive to the value of DTS. Different
values of DTS may require different computational resources
and, thus, may provide different classification results.

In this paper, to simplify the complexity of the model and
decrease the user-defined parameters, the concept of memory
cells will not be used. The proposed approach directly utilizes
the center vector of AB to represent immune memory. Accord-
ing to the principles of AIN (Section II) and the AB model
[22], each antibody (ab) should be able to recognize a large
number of antigens within its recognizing range. To describe
the antibody ab, two attributes of AB are also extended to
each single antibody (ab). Every ab is designed to consist of
two important attributes: its center vector ¥ and recognizing
radius o; thus, ab can recognize antigens within its recognizing
radius. The recognizing radius and center vector of the AB are
determined by the set of all individual antibodies (ab) according
to the following steps.

To represent the recognizing relationship between antigen
(ag) and antibody (ab) in the AB model, the relation function
f(ag, ab) was used [39]

1, Wvt —o>0
0, otherwise

ag.r = f(ag.V,ab.W) = { )
where ag.r is the recognizing attribute of the antigen, ab.W
is the ab center vector, ag.V represents the feature vector of
the antigen, o is the ab recognizing radius, and N, is the
number of image bands. WV™T — o > 0 denotes the presence
of the antigen in the range of the antibody, i.e., the antigen is
recognized by this ab. Hence, ag.r is equal to one; otherwise,
the antigen is out of ab recognizing radius, yielding ag.r equal
to zero. The fundamental idea is shown in Fig. 3.

Using the aforementioned notations, a set of ab, AB,, in AIN
for the class ¢, may be constructed, which will recognize all
training samples belonging to the particular class ¢ only. In
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Fig. 3. ABNet (n and np represent the number of antigens and antibodies,
respectively).

the testing stage, the ABNet determines an antigen’s class by
selecting the class whose corresponding AB, recognizes the
antigen.

According to the AB model, the antibodies belong to the
same immune feature space, which is the spectral space in
remote sensing image classification. In the preprocessing, each
ab and corresponding ag are projected to the same space with
the same vector length. Normalization as a common method
transforms the input vector into a unit vector by dividing all
components by its original length, but it reduces the original
Np-dimensional feature space to ([N, — 1)-dimensional feature
space. The following projection process may be used to ini-
tialize the antibodies and antigens. Assume that the domain
of the antibody input center vector is a bounded set D of the
Nj-dimensional space and that S™* represents Nj-dimensional
antibody (ab) of the (N, + 1)-dimensional feature space [40].
To obtain the equal length of the center vector of each antibody
with all input information included, we define a transformation
F:D — SNv, where W € D represents the center vector of
the antibody ab as follows [40]:

F(W) = (W, /& =WP),

d > max {|W||W € D} .

2

According to (2), all antibodies corresponding to D are

projected upward on the sphere space S by transformation

function F(WW). Accordingly, due to the relationship between

the antibodies and antigens, all antigens are also projected onto
the same feature space.

IV. ABNET FOR SUPERVISED CLASSIFICATION OF
REMOTE SENSING IMAGES

Based on the AB model, a new AIN, named the ABNet, is de-
veloped for the supervised classification of multi-/hyperspectral
imagery. Multi-/hyperspectral remote sensing data set X =
{z',22,...,2™}" is observed and mapped through N}, bands
to a finite rectangular lattice Q = {(4,5)) : 1 <1 < Nyow, 1 <
J < Neor}, where Nyoy and N, represent the numbers of
rows and columns, respectively. T denotes the transposition of
a matrix.

To clearly describe the aforementioned concepts for remote
sensing classification and the relationship between ABNet and
remote sensing image, the following notations and definitions
are used.

1) Let AB denote the set of antibodies, and let ab represent
a single antibody, where ab € AB. In relation to remote

sensing classification, AB represents the set of trained
class centers whereby each class has the corresponding
AB.. Thatis, foragivenclassc,c € C = {1,2,...,n.},
AB, is designed to recognize all training samples (anti-
gens) belonging to the cth class, where n. represents the
number of classes in the data set. Different classes of
samples are recognized by different sets of ABs. Thus,
AB ={AByUABy;U---AB,,_}.

2) Each ab has the following attributes: ab.c represents the
class attribute, and AB, = {ablab.c = c}; ab.o is the
recognizing radius of this antibody; and ab.W represents
the center vector, ab.W = {ab.wy,...,ab.wy,}, where
ab.wy, is the value of its center vector in kth bands and
Ny, is the number of the image bands.

3) Let AG denote the set of antigens, where ag represents
a single antigen, thus ag € AG. In the training stage, ag
represents the training samples, while in the classification
stage, ag describes the classified pixels.

4) Each ag has the following attributes: ag.c represents the
attributes of the class; ag.V represents the feature vec-
tor of the antigen, ag.V = {ag.vy,...,ab.vy,}, where
ag.vy, is the value of kth band; and ag.r is the recognizing
attribute of the antigen, whereby ag.r = 1 represents the
recognized antigen and ag.r = 0 describes the antigen
not recognized by any of the antibodies (ab).

Fig. 4 shows a simple two-class example in 2-D feature
space to illustrate the training process of ABNet. There are two
antigen (sample) sets with different classes, AG; and AGa, as
training samples, with each set comprising six antigens. Tak-
ing AG, as example, AG| = {ag;;[i=1,7=1,2,3,4,5,6},
ABNet selected aby; as the first antibody and obtained its
recognizing radius oy by using all unrecognized antigens with
the same class and the other antigens with different classes
(see Section I'V-C in detail). Because ag11, agio, and ag3 are
within the range of o, they are recognized by ab;; and are
signed as the recognized antigens. All recognized antigens will
not take part in the next training. The process is continued
until all antigens are recognized by the antibody sets. During
the process, to recognize all six antigens in the antigen sets,
AG, and AG9, new antibodies abyo, abay, abso, abss are also
obtained. After the training process, the ABNet is used to
classify these unknown/unclassified antigens and determines
the antigen’s class by selecting a class of artificial antibody that
can recognize the antigen within the recognizing radius o.

To achieve the aforementioned results, the implementation of
ABNet includes the following steps:

1) selection and representation of the samples;

2) ABNet preprocessing and initialization;

3) the training of ABNet;

4) remote sensing image classification using trained ABNet.

These steps are detailed as follows.

A. Selection and Representation of the Samples

Based on the characteristics of the remote sensing image
(e.g., texture and spectral properties) and application purposes,
ROIs representing the expected classes by a priori knowledge



898 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 3, MARCH 2012

AG,
AG ag
ag,, & m
Feature A 6} agy
%19 agy, 82
ag;@ .a
ag, ° -gzs
“gls. .ag”, a8
Feature B

()

Fig. 4.

AG,
Feature A ‘ﬁ“
‘ié"?‘ o,
ag, 15. f .F’ g'(b‘
e
AB,
Feature B
(b)

Training process of ABNet. (a) Two populations of antigens, AG; and AG2. (b) AB1 and AB> recognize all the antigens of the same class, AB] =

{abijli =1,j =12} and AB2 = {ab;;|i = 2,j = 1,2, 3}. o represents the recognizing radius of the corresponding antibody.

can be selected from an image or a spectral library. In the
ABNet, the training samples are represented by the set of
antigens AG, where ag represents a single antigen, ag € AG.
For the supervised classification of a remote sensing image, an
antigen represents input training data of the same class. The
class attribute of each antigen ag in the remote sensing image
is assigned to the class of the corresponding ROI, ag.c =c €
C ={1,2,...,n.}. The number of classes n. is equal to the
number of classes of ROIs obtained in the process.

B. ABNet Preprocessing and Initialization

All antigens are first initialized by normalization using (2).
To represent whether the antigen has been recognized by
the artificial antibody during the training process, we define
the antigen recognizing attribute ag.r, using (1), as follows.
According to (1), if ag.r = 1, the antigen has been recognized
by an artificial antibody; otherwise, ag.r = 0. At the inception,
for any class ¢, 1 < ¢ < n,, no antigens are recognized, i.e.,
ag.r =0, ag € AG. That s, each corresponding antibody pop-
ulation AB, is empty, n, = 0, where n%, represents the number
of the antibodies in AB..

C. Training of ABNet

Upon completion of initialization, the ABNet training pro-
cess commences. For any class ¢, the following process is
repeated until all antigens are recognized by the cth class in
AG., obtaining the corresponding antibody population AB..
The training process consists of the following five steps.

Step 1) Preselection: Select an antigen as the preselected

antigen ag,, which is closest to the center of ag
population with

ag, = {ag|argmin,ge ac, Distance(ag, Center),
ag.r =0} (3)
n Ny
Center.vy, = Z Z(agj.vk) /n 4)
j=1k=1

where the function Distance() uses the Euclidean
distance, C'enter represents the center of ag pop-
ulation, ag;.v; is the value of kth bands, and n
represents the number of antigens with ag.r = 0.

Step 2) Cloning: The ag, is cloned (copied) to obtain a clone
set CA, CA ={cay,...,can, }, where n,, is the
number of clones generated. The number of clones
n., for each antibody can be adaptively obtained
to avoid the impact of variations in the number
of clones. The number of clones generated for the
preselected antigen ag, is given by

N =N (6)

where n is the number of the training samples for
the cth class.

Step 3) Mutation: Each clone feature can be mutated
with the probability of mutation assigned, generat-
ing a population MU of matured clones, MU =
{muq,...,mu,, }. The mutation process is as
follows:

mu; W = ca; Wk + P X N(0,1) x (MAXy, — MINy),
k=1,....Ny;i=1,....,npm (6)

where M AX}, and M I Ny, represent the maximum
and minimum of the feature vector in kth band;
ca;.wy, and mu;.wy represent the values of kth
bands in the mutated antibody mu,; and a;; and
N(0,1) is a normally distributed random variable
in the range [0,1]. The mutation rate p,, can be
adaptively obtained according to the different clones
[22] or be set to an experimental value, for example,
0.15.

Step 4) Adaptive calculation of the new artificial antibody
center vector and recognizing radius. This is the
crucial part of the ABNet process. In contrast to
the previously developed artificial immune clas-
sifier RLCRSI [23], ABNet can adaptively build
up the classifier without relying on user-defined
parameters.

After the cloning and mutation process is com-
pleted, the proposed algorithm will add an artificial
antibody ab; to the ABNet from the mutated popu-
lation MU, as follows.

1) Inthe MU population, every matured clone mu;
is known as a candidate artificial antibody with
the recognizing radius o and the center vector .
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To adaptively construct the ABNet, we use the
minimum covering principle [40] to obtain o and
W of mu; as follows:

mu; W = (mu;wy, ..., mu; W, ..., Mu;Wy,) ,
k=1,2,...,N, (7)
mu;.0c = (dy + dg)/Q ()
dy = Jnax. {{mu; W,ag.V)} )
dy = agrgi%c {{mu; W,ag.V) > dy} (10)

2)

where mu,;. W and mu,.o, respectively, repre-
sent the center vector and the recognizing radius
of a given candidate artificial antibody mu;, with
mu;.c = c. Furthermore, mu,;.wj, represents the
value of kth band to mu;, and (mu;.W, ag.V')
denotes the inner product of mu,;.W and ag.V.
As vectors of all artificial antibodies and antigens
are made equal by normalizing using (2), the
value of the inner product is sufficient to describe
the recognizing capacity of the artificial anti-
body. The greater the inner product of mu,;.W
and ag.V, the smaller the distance between mu;
and ag. The recognizing radius of mu;, mu;.o,
can thus be calculated using (8)—(10).
According to the ABNet principles, AB.
should be able to recognize all training samples
belonging to the corresponding class ¢ and does
not cover any samples of a different class. To sat-
isfy the aforementioned condition, d; is used to
control the decision boundary, which represents
the MD between mu; and ag in other classes in
(9) to prevent other class antigens being trained.
That is, mu;.c = ¢, and the antigens in (9) do not
belong to the cth class, ag ¢ AG.. In addition,
to guarantee recognition of more antigens with
the same class for mu;, do is utilized to find
the maximum recognizing radius—equal to the
maximum distance between mu; and ag—where
these antigens belong to the same class, ag €
AG., and the inner product of mu;.W and ag.V’
is greater than d;. By the aforementioned pro-
cess, the mu; will recognize as many antigens as
possible with the same class.
Calculating the number of recognized antigens
for each candidate antibody mu,. All nonrecog-
nized antigens in AG,. are assessed to determine
whether they are recognized by the candidate
artificial antibody mu,;. If the antigen ag is
recognized, ag.r = 1; otherwise, ag.r = 0. This
process can be determined using (1) and is de-
scribed by the following function:

1 T>0
“g'T_{o T<0 (in
T = (mu;. W) (ag. V)" — mu;.o. (12)
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After the completion of the aforementioned
process, the number of recognized antigens by
mu;, m;, 1S obtained.

According to Steps 1) and 2), each candidate
artificial antibody has the corresponding number
of the recognized antigens m,. The candidate
artificial antibody with the maximum value of
m,; becomes a new artificial antibody ab; and
is added to the AIN n}G =n% + 1, where ng
represents the number of antibodies in AB,.. The
remaining candidate antibodies become redun-
dant and are consequently removed.
The new artificial antibody ab; is used to rec-
ognize the ag with ag.r =0 in AG,, and the
number of recognized antigens m; by ab; is
recorded.
According to the aforementioned steps, two anti-
body attributes—the center vector I and the recog-
nizing radius o—are adaptively obtained by training
these nonrecognizing antigens (samples).
Classification of the training samples: If all antigens
in AG, are recognized, the training process and the
building of ABNet on this particular class c are com-
pleted, and the artificial antibody set of the cth class
AB, is obtained, AB. = {ab;|j =1,...,n%}. In
this case, the algorithm proceeds to Step 6); other-
wise, the process repeats from Steps 1) to 5).
Stopping condition for the training procedure. If c is
equal to the number of classes 7., the training proce-
dure has been completed. Otherwise, the next class
will be trained according to the proposed algorithm
from Steps 1) to 6), and ¢ = ¢ + 1.

The ABNet is built using the above outlined training pro-
cedure. That is, all the sets of artificial antibodies were
obtained for all ROIs, AB = {AB; UAB,U---AB,_} and
ab € AB. = {ab|ab.c = ¢}, and will be subsequently used in
the remote sensing image classification.

3)

4)

Step 5)

Step 6)

D. Classification

Upon completion of the training procedure, the ABNet be-
comes available for classification. It is worth noting the dual
purpose of antigen: In the classification process, the antigen
represents the unclassified pixels, whereas during the process
of training, it describes the training samples. The ABNet de-
termines an input antigen’s class by selecting the class whose
corresponding artificial antibody set recognizes the antigen.
The classification consists of two steps as follows.

Step 1) When the classified antigen ag is input to the system,
ABNet first determines whether the antigen is recog-
nized by the artificial antibody set. If the antigen is
recognized by an antibody in AB,. using (11), the
antigen is assigned to the cth class, ag.c = c. If the
antigen cannot be recognized by any of the artificial
antibodies, i.e., ag.c = 0, then the antigen will be
classified in Step 2).

The antigen is out of the current antibody population
and is not recognized, ag.c = 0, in Stepl). ABNet

Step 2)
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will calculate the distance between the antigen and
the centers of the antibody sets AB..W to deter-
mine the class of the antigen. Since the proposed
algorithm is applied to multi-’hyperspectral remote
sensing image classification, the distance between
ag and AB..W is calculated using the SAM algo-
rithm. Since the SAM algorithm uses only the vector
direction and not the vector length [5], [6], this
method is insensitive to illumination. The distance
function is defined as follows:

dis(ag, AB.)

Ny,
> (ag.vk)(ABcawy)
= cos ! b=l
Ny % Ny %
{Z (ag.vk)Q] [Z (ABc.wk)ﬂ
k=1 k=1
(13)
AB,.W = {AB,wilk = 1,2,..., N} (14)

ABc.wk = Z(ml X abi.vk)/ Zmi,

where AB..W represents the center vector of the
cth artificial antibody set calculated by the following
function:

ng ng
ab;.c=c (15)

i=1 i=1

where m; is the number of recognized antigens
by ab; (see also Section IV-C-Step-4)-4) and ng
represents the number of antibodies in AB..

Finally, ABNet outputs the classified multi-/hyperspectral
remote sensing image results.
The flowchart for ABNet is shown in Fig. 5.

Artificial Antibody Network (ABNet)
Classified Image
ABNet is built up
B N a— Select ROI successfully and is available > -
— for use in classification D (G )
i —
'y
Y
Multi/hyper-spectral
remote sensing image
- All antigens 110
Preprocessing and every ROI are trained
initialization
The next
¢ ROI Y
All antigens
Preselect Process [N in the class are
recognized
Use ab to recognize antigens
Clone Process of the same class
Construct a new artificial
Mutaie Process immune ball ab in a ROI
Flowchart of ABNet.
TABLE 1

PARAMETER CONFIGURATIONS OF THE CLASSIFICATION
METHODS IN THREE EXPERIMENTS

Methods Parameters
MD None
GML None
BPNN | Experiments | Hidden layers | Learning rate | Momentum rate
Experiment 1 1 0.2 0.9
Experiment 2 1 0.25 0.95
Experiment 3 1 0.15 0.85
MVINC | Experiments Tolerance threshold p
Experiment [ 0.15
Experiment 2 0.15
Experiment 3 0.15
RLCRSI | Experiments Stimulation | Total resource ATS
threshold
Experiment 1 0.85 50 0.8
Experiment 2 0.85 50 0.8
Experiment 3 0.85 50 0.8
ABNet None

V. EXPERIMENTS AND ANALYSES

The proposed ABNet and the previous artificial immune
classifiers, MVINC and RLCRSI, were implemented using
proprietary software written in Visual C++ 6.0 programming
language, and the traditional classifiers such as MD, GML,
and back-propagation neural network (BPNN) were applied
using ENVI software. Three different types of remote sens-
ing images, one multispectral remote sensing (TM) and two
hyperspectral remote sensing images (PHI and AVIRIS), were
used to evaluate the classification capacity of all classifiers in
each experiment, including ABNet, MD, GML, and BPNN, as
well as the previously developed artificial immune classifiers
RLCRSI [23] and MVINC [24]. The parameter configurations
of each classifier for the experiments are listed in Table I, noting
the following specific characteristics for each classifier.

1) MD and GML do not need the parameters.

2) The number of hidden layers, the learning rate, momen-
tum rate, and training iterations in BPNN need to be set.
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3) In RLCRSI [23], the user-defined parameters, the stimu-
lation threshold, total resource, and ATS need to be set.

4) MVINC is reliant on user-defined tolerance threshold o
parameter.

5) ABNet can adaptively obtain the center vector and recog-
nizing radius and control the number of antibodies.

A. Accuracy Measurement

A quantitative measurement of classification accuracy is
used to assess the quality of the image classification using
the average accuracy (AA), the overall accuracy (OA), and
the Kappa coefficient (Kappa) [5]. AA is the average of the
individual class producers’ accuracy, and OA is simply the
sum of the pixels correctly classified divided by the total
number of samples. The resulting quality was assessed for each
classification method, using the same testing set of pixels for
computing confusion matrix and the accuracy measures.

Prediction rate is defined as the percentage of correctly
predicted samples. As the aim is to use a statistical measure to
determine if two methods have the same accuracy, McNemar’s
tests will be used to compare the misclassification rates ob-
tained with different methods in terms of statistical significance
in all experiments.

McNemar’s test is a direct comparison method for deter-
mining the statistical significance of differences observed in
two sets of classifications using the same validation set [41].
Given two classifiers C7 and Cs (e.g., MVINC and ABNet),
null hypothesis is that the two algorithms C; and Cy have
the same error rate. This test compares the number of pixels
misclassified by C, but not by Cy (M;2), with the number
of cases misclassified by Co, but not by C1 (May). If My2 +
My > 20, the X2 (where X? is defined by (16)) statistics can
be considered as following a chi square distribution (with one
degree of freedom) [42]

| Mo — My | —1)° 2

X? = ( ~ 16
Myy + Moy X1 (16)

and McNemar’s test accepts the hypothesis that the two clas-
sification algorithms have the same error rate at significance
level « if this value is less than or equal to Xi,p for ex-
ample, x§ 051 = 3.841459 [43]. That is, if McNemar’s value
X? is greater than X%.os,p the null hypothesis is false, and
the two algorithms are significantly different. We applied the
McNemar’s test to each pair of compared algorithms. The
case Mo + My < 20 for which the chi square approximation
should not be applied [42], [44]. In the following experiments,
the case M2 + M1 < 20 does not occur.

In addition to the classification accuracy, the computation
time is another important consideration. For the six classifiers
(MD, GML, BPNN, MVINC, RLCRSI, and ABNet), the com-
putation times have also been given for the experiments.

B. Experiment 1: Wuhan TM Image

The first experiment was performed using a 30-m-resolution
multispectral Landsat TM image (1024 x 1024 pixels) of
Wuhan city with six bands, acquired on October 26, 1998

Fig. 6.  'Wuhan TM image, October 1998 RGB (3,2,1).
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TABLE II
L1ST OF CLASSES AND NUMBER OF LABELED SAMPLES IN
EACH CLASS FOR EXPERIMENT 1

Class Name Number of labeled samples

Yangtze River 6811
Lake 10486

Soil 4034
Vegetation 10890
Building 7325

Bare land/Road 7173
Total number of samples 46719

(Fig. 6). The observed image area was expected to consist of
six classes: Yangtze River, lake, soil, vegetation, building, and
bare land/road. Six ROIs representing the six classes were se-
lected as training regions, and each training region had ground
reference sample points. Fig. 7 shows the spectra of the six
training regions. The list of classes and the number of labeled
samples for each class are given in Table II. All six bands
were used for classification. In order to train the algorithms,
the training data set—containing approximately half of the
available samples—was obtained randomly from the labeled
samples.

Fig. 8(a)-(f) shows the classification results using MD,
GML, BPNN, MVINC, RLCRSI, and ABNet, respectively. To
evaluate the classification accuracy, a test field map is shown in
Fig. 8(g) based on ground reference data. The visual compar-
isons of the six supervised classifications in Fig. 8 show varying
degrees of accuracy in pixel assignment. The six classifiers
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Fig. 8.
reference data.

have similar classification results in the Yangtze River and lake
classes. However, it is hard for MD to classify soil as shown
in the top left corner of Fig. 8(a). Furthermore, there are many
vegetation and bare land/road class pixels misclassified to the
building classes using other classifiers. In GML classification
results, although the bare land/road class may have better visual
results, many other class pixels (building and soil in particular)
are also wrongly assigned to this class. Compared to GML,
BPNN has significantly improved classification accuracy, but
many building pixels are still assigned to the bare land/road
class. Regarding the two previously developed artificial im-
mune classifiers—MVINC and RLCRSI—they were found to
be competent in their classification, even though some bare
land/road pixels were wrongly assigned to building class. As
shown in Fig. 8(f), ABNet can achieve the better visual accu-
racy in not only the vegetation class but also other classes, e.g.,
building and bare land/road classes.

For a more detailed verification of the results, the overall
and per-class accuracies in terms of AA, OA, Kappa, and
computational time are presented in Table III for each of the
classification methods (MD, GML, BPNN, MVINC, RLCRSI,
and ABNet). The best accuracy was highlighted in bold for each
row in the table.

As shown in Table III, using any of the classification
methods, Yangtz River and lake classes can be recognized at

] Yangtze River

Bare land/Road

Supervised classification images for Wuhan TM image. (a) MD. (b) Maximum likelihood. (c) BPNN. (d) MVINC. (e) RLCRSI. (f) ABNet. (g) Ground

least 96% per-class accuracy. For building and bare land/road
classes, six classifiers show different classification capability.
GML and BPNN have difficulty recognizing the build-
ings, whereas they have good classification accuracy to bare
land/road class. In contrast, the classification accuracy to the
building class using MD, MVINC, and RLCRSI is higher than
85%, compared to under 72% for the bare land/road class. One
reason for such low accuracy is that the spectra of building and
bare land/road are too similar to these classifiers; thus, only one
of the two classes could be recognized correctly. Table III shows
that ABNet has the best classification accuracy for not only the
building but also bare land/road class. It is worth noting that
ABNet did not have the highest classification accuracy for each
class; however, it obtained the best OA for the entire set. Hence,
it was proven that ABNet is accurate, is able to generalize
and produce a well-balanced internal distribution of error, and
has better overall classification ability than other classifiers.
Regarding computational time, BPNN requires excessive pro-
cessing time (356.3 s for 300 iterations), while MD is most
efficient, taking only 3.1 s. In comparison among three artificial
immune classifiers, ABNet has the best classification accuracy
of 93.70%, with the reasonable computational time of 18.6 s,
an improvement on RLCRSI.

The main reason for the comparatively high accuracy
achieved by ABNet is that GML is based on the assumption
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TABLE 1II
COMPARISON OF S1X METHODS OF CLASSIFICATION FOR WUHAN TM IMAGE
Class MD GML BPNN MVINC | RLCRSI ABNet
Yangtze 99.52% 98.59% 99.19% 99.60% | 99.44% 98.22%
river
Lake 99.51% 96.75% 98.75% 99.17% | 98.90% 98.70%
Soil 69.66% 4531% 81.98% 86.17% | 91.25% 87.16%
Vegetation 70.15% 89.83% 87.55% 95.62% | 91.89% 94.21%
Building 96.18% 61.67% 63.58% 85.41% | 85.64% 87.18%
Bare 49.48% 91.83% 90.17% 64.92% | 71.53% 91.65%
land/Road
AA 80.75% 80.66% 86.87% 88.48% | 89.78% 92.85%
OA 81.89% 84.71% 87.92% 89.87% | 90.40% 93.70%
Kappa 0.7796 0.8125 0.8527 0.8761 0.8829 0.9230
Time 3.1s 4.1s 356.3s 5.5s 23.4s 18.6s
TABLE IV 40+
MCNEMAR’S TEST FOR WUHAN TM IMAGE
Methods | ABNet | RLCRSI | MVINC | BPNN | GML | MD 301
(OA)  |(93.70%) | (90.40%) | (89.87%) | (87.92%) |(84.71%)|(81.89%) 8
ABNet | NA | 712.00 | 785.65 | 1563.29 | 2845.64 | 3842.50 S 20l T
RLCRSI NA 2120 | 26421 | 989.39 |2409.48 2 e
MVINC NA 129.69 | 725.43 |2089.88 =
BPNN NA | 359.26 | 909.78 o 10 o
GML NA [ 16397 e S
MD NA ol R
500  BOO 700 800
Wavelength
Fig. 10. Spectra of seven land-cover classes.

TABLE V
LAND-COVER CLASSES AND ASSOCIATED NUMBERS OF
PIXELS USED IN EXPERIMENT 2

Fig. 9. Xiaqgiao PHI image RGB (70,40,10).

that both training data and the classes themselves display multi-
variate normal (Gaussian) frequency distributions [2]. However,
due to the complexity of ground substances and the diver-
sity of disturbance, data from remotely sensed images often
do not strictly adhere to this rule which, therefore, leads to
the relatively poor performance. BPNN may achieve better
accuracy; however, the main drawback to BPNN is the slow
learning phase [45]. The selection of the learning rate and
momentum rate, usually determined empirically, affects the
BPNN convergence. The previous artificial immune classifier
RLCRSI may also obtain satisfactory results, but it requires a
large number of user-defined parameters to control the memory
cells and the classification accuracy, such as the stimulation
threshold, total resource, and ATS [23]. In contrast, ABNet
decreased the number of user-defined parameters and improved
the algorithm intelligence. It is a type of data-driven self-
adaptive method that can adjust itself to the data without any

Class Name Number of labeled samples
Road 716
Corn 1430
Vegetable 1030
Tree 263
Grass 255
Water 492
Soil 585
Total number of samples 4771

explicit specification of functional or distributional form for the
underlying model. ABNet adopts an artificial antibody model
to adaptively construct the network and obtains two parameters
(its center vector and recognizing radius); therefore, it can
provide a clear and direct way to construct the classifier and
more intelligent classification method, no matter how complex
the decision boundary may be. These characteristics enable
ABNet to achieve the best accuracy for multispectral image
classification.

In addition to the classification accuracy, Table IV provides
a pairwise comparison of the six supervised classification algo-
rithms using McNemar’s test. McNemar’s test is a useful tool
to determine if two classification methods have significantly
different prediction rates. From Table IV, it can be seen that
all values of McNemar’s test are greater than the critical value
X%0.05,1) (3.841459). This implies that all classification methods
have significantly different prediction rates and ABNet is sig-
nificantly more accurate than RLCRSI and MVINC. It is worth
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Tree
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B soil

Fig. 11.  Supervised classification images for the PHI image. (a) MD. (b) Maximum likelihood. (c) BPNN. (d) MVINC. (e) RLCRSI. (f) ABNet. (g) Ground
reference data.
TABLE VI
COMPARISON OF ABNET WITH OTHER ALGORITHMS IN CLASSIFYING THE PHI IMAGE
Class MD GML BPNN MVINC RLCRSI ABNet
Road 99.86% 99.72% 100% 100% 100% 100%
Corn 77.41% 89.72% 98.32% 99.16% 98.81% 99.23%
Vegetable 65.05% 98.93% 84.85% 86.70% 80.10% 93.59%
Tree 80.61% 55.51% 47.15% 54.75% 70.34% 88.59%
Grass 78.43% 51.76% 38.04% 46.67% 63.92% 71.76%
Water 99.19% 84.76% 99.39% 99.39% 99.80% 100%
Soil 61.37% 68.03% 72.99% 83.93% 86.84% 85.81%
AA 80.27% 78.35% 77.25% 81.51% 85.69% 91.28%
OA 78.62% 86.13% 86.63% 89.50% 90.15% 94.51%
Kappa 0.75 0.835 0.8371 0.8696 0.88 0.9321
Time 3.8s 8.2s 120.3s 6.3s 15.5s 25.4s

noting that the value of McNemar’s test between RLCRSI and
MVINC is the lowest (21.20). Although the value is still well
above 3.841459, to some extent, it indicates that RLCRSI and
MVINC are more similar than other classifiers.

C. Experiment 2: PHI Image

The data set used was acquired from the Xiaqiao test site, a
mixed agricultural area in China, using the PHI. In this experi-
ment, 80 bands of the PHI image (340 x 390 pixels) were used,

and their spectral ranges were from 0.417 to 0.854 ym. Fig. 9
shows the experimental PHI image cube. Seven representative
classes, namely, road, corn, vegetable, tree, grass, water, and
soil, were considered. Fig. 10 shows the reflectance curves of
these land-cover classes with the list of classes, while Table V
gives the number of labeled samples for each class. All 80 bands
were used for classification.

Fig. 11(a)—(e) shows the classification results using MD,
GML, BPNN, MVINC, and RLCRSI, respectively. Fig. 11(f)
shows the classification result using ABNet. To evaluate the
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TABLE VII
MCNEMAR’S TEST FOR PHI IMAGE
Methods | ABNet | RLCRSI | MVINC | BPNN GML MD
(OA)  [(94.51%)[(90.15%) | (89.50%) | (86.63%) | (86.13%) | (78.62%)
ABNet NA 32.23 116.56 | 242.52 198.25 620.88
RLCRSI NA 54.63 154.09 103.08 544.69
MVINC NA 47.30 31.97 345.83
BPNN NA 0.24 176.69
GML NA 108.07
MD NA
Fig. 12.  Indian Pine AVIRIS Image RGB (57,27,17).

classification accuracy, a test field map is shown in Fig. 11(g),
based on the ground reference data. The training data set,
containing approximately half of the available samples, was
obtained randomly from the labeled samples. The classification
accuracies for the six classifiers are given in Table VL.

As can be seen from Table VI, MD has the highest accuracy
for grass class (78.43%), but MD is confused by vegetation,
which is assigned to other classes. GML has the best classi-
fication accuracy for vegetable class, but the noise affects the
overall classification accuracy shown in the right of Fig. 11(b).
BPNN requires most computational time (120.3 s) and is con-
fused by trees, with only 47.15% classification accuracy. Two
previous artificial immune classifiers have better classification
results than traditional classification algorithms, but there are
still misclassified pixels with some grass pixels being mis-
classified as vegetable pixels (Fig. 11(d) and (e). In addition,
RLCRSI has better classification accuracy for soil class than
MVINC and ABNet. On the whole, although ABNet did not
obtain the best accuracy for grass, vegetable, and soil classes,
it produces a better overall classification accuracy than other
classifiers. It improves the OA from 78.62% to 94.51% (by
15.89%) and the Kappa from 0.75 to 0.9321 (i.e., by 0.1821)
with the satisfactory computational time of 25.4 s. McNemar’s
value is compared to a critical value shown in Table VII; it
demonstrates that ABNet is significantly different from other
classifiers. These results demonstrate that ABNet is also a better
classifier for hyperspectral remote sensing images.

D. Experiment 3: AVIRIS Image

In the previous two experiments, a multispectral TM im-
age with six bands and a hyperspectral PHI image with
80 bands have been tested. To test a hyperspectral image

TABLE VIII
LAND-COVER CLASSES AND ASSOCIATED NUMBERS OF
PIXELS USED IN EXPERIMENT 3

Class Name Number of labeled samples
Cl1. Corn-no till 1434
C2. Corn-min till 834
C3. Grass/Pasture 497
C4. Grass/Trees 747
C5. Hay-windrowed 489
C6. Soybeans-no till 968
C7. Soybeans-min till 2468
C8. Soybeans-clean till 614
C9. Woods 1294
C10.Bldg-Grass-Tree drives 380
Overall 9725
8000 ) " " et
7000 Je
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Fig. 13.  Spectra of ten land-cover classes.

with more bands (> 200), image data with 220 bands were
used in this experiment; the image was acquired by the
AVIRIS in June 1992 and was downloaded from the Web site
(http://dynamo.ecn.purdue.edu/~biehl/MultiSpec). The image
data (145 x 145 pixels) shown in Fig. 12 represent the agricul-
tural area of Indian Pine in the northern part of Indiana and are
composed of 220 spectral channels with spectral ranges from
0.417 to 0.854 pm in approximately 10-nm bandwidths [46].
The following ten most representative land-cover classes were
considered: Corn-no till (C1), Corn-min till (C2), Grass/Pasture
(C3), Grass/Trees (C4), Hay-windrowed (C5), Soybeans-no till
(C6), Soybeans-min till (C7), Soybeans-clean till (C8), Woods
(C9), and Bldg-Grass-Tree drives (C10). The list of classes
and the number of labeled samples for each class are given in
Table VIII. Half of the available samples were used to train the
classifiers except C10. To avoid the singularity problems of the
covariance matrix, the number of the training samples for C10
is equal to 230 to exceed the number of bands. Fig. 13 shows
the reflectance of the ten land-cover classes. All 220 bands were
used for classification.

The classification images of six classifiers are shown in
Fig. 14, while Table IX lists the classification accuracy and
computational times of all classifiers. From Fig. 14 and
Table IX, it can be seen that the MD classifier is not adapted
to classify a hyperspectral image. MD utilizes only the mean
value of the training samples to classify the hyperspectral image
resulting in misclassification. For example, many Soybeans-
min pixels were misclassified to Corn-no till and Soybeans-
no till pixels. The GML classifier has the highest classification
accuracy for Soybeans-min and Woods classes, 99.35% and
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Fig. 14. Supervised classification images for the AVIRIS image. (a) MD. (b) Maximum likelihood. (¢) BPNN. (d) MVINC. (e) RLCRSI. (f) ABNet. (g) Ground

reference data.

TABLE IX
COMPARISON OF ABNET TO OTHER ALGORITHMS IN CLASSIFYING THE AVIRIS IMAGE

Class MD GML BPNN | MVINC | RLCRSI | ABNet

C1. Corn-no till 58.23% | 70.78% | 81.59% | 69.60% | 75.17% | 85.91%
C2. Corn-min till 17.15% | 50.48% | 65.71% | 60.19% | 64.99% | 69.42%
C3. Grass/Pasture 2.82% 50.10% | 70.82% | 86.92% | 89.54% | 91.35%
C4. Grass/Trees 72.69% | 60.37% | 95.05% | 96.39% | 98.53% | 95.58%
C35. Hay-windrowed 99.39% | 50.72% | 99.39% | 99.39% | 99.39% | 99.80%
C6. Soybeans-no till 47.83% | 53.41% | 76.34% | 81.61% | 85.43% | 86.05%
C7. Soybeans-min till 16.61% | 99.35% | 57.33% | 81.48% | 84.00% 82.54%
C8. Soybeans-clean till 5.54% 50.00% | 81.11% | 47.39% | 57.98% | 68.08%
C9. Woods 83.69% | 99.85% | 85.63% | 95.90% | 96.99% 96.21%
C10.Bldg-Grass-Tree drives | 38.68% | 60.53% | 80.79% | 36.32% | 47.37% | 80.53%
AA 4426% | 64.56% | 79.38% | 75.52% | 79.94% | 85.55%

OA 42.76% | 73.85% | 75.40% | 78.24% | 82.04% | 85.41%

Kappa 0.3520 0.6831 0.7191 0.7463 0.7910 0.8313

Time 11.1s 18.3s 1436.7s 30.7s 150.8s 129.3s

99.85%, respectively, while other classes do not have satisfac-
tory results.

To obtain the best possible BPNN result (1436.7 s for 1000
iterations) for this experimental image, the water absorption
bands have been discarded first, and the number of bands was
reduced by the simple feature selection method considering
one band every two. Fig. 14(c) shows the BPNN classifica-

tion result, and the OA of BPNN is 75.40%. MVINC and
RLCRSI may obtain better classification results than traditional
classifiers, but there are still some errors; Corn-min pixels
are misclassified to Soybeans-min pixels in the bottom left
corner. In comparison of Fig. 14(a)—(f) with Fig. 14(g), the
classification image of ABNet demonstrates the best visual
result for all classes.
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TABLE X
MCNEMAR’S TEST FOR AVIRIS IMAGE
Mecthods | ABNet |RLCRSI| MVINC | BPNN | GMIL | MD
(OA)  |(85.41%)|(82.04%)|(78.24%) | (75.40%) | (73.85%) | (42.76%)
ABNet | NA | 60.96 | 225.62 | 356.66 | 566.04 | 3840.47
RLCRSI NA | 115.06 | 153.66 | 208.86 | 3208.26
MVINC NA | 25722 | 56.17 |2713.13
BPNN NA | 5.888 |2500.44
GML NA | 77172
MD NA

According to the earlier analysis, the traditional classifiers
do not achieve satisfactory classifications of the AVIRIS image.
One reason may be that some water absorption bands (104—108,
150-163, 220) influence the classification results. If these bands
are excluded, better classification results may be obtained. In
addition, as the Hughes phenomenon [47] can be observed
in high-dimensional feature spaces, the classification accuracy
may also be improved by dimension reduction [48]-[50]. AB-
Net inherits the biological properties of self-organizing, self-
learning, and self-memory to adaptively obtain each artificial
antibody during the training process. In the process of classifi-
cation, ABNet utilizes these antibodies to recognize the image
pixels, and each antibody has its corresponding center vector
and recognizing radius. Within the range of the recognizing
radius, the antibody will recognize the image pixels with the
same classes. Although ABNet requires more computational
time than MD, GML, and MVINC, it produces better clas-
sification results than other classifiers shown in Table IX.
The specific improvements are as follows: ABNet improved
overall classification accuracy from 42.76% to 85.41% (an
improvement of 42.65%) and the Kappa from 0.3520 to 0.8313
(an improvement of 0.4793). McNemar’s value is compared
to a critical value shown in Table X. It describes that ABNet
is significantly different compared to other classifiers, as the
values are greater than the critical value X%0.05,1) (3.841459).
As discussed in this experiment, ABNet is an effective classifier
to apply with hyperspectral remote sensing imagery.

VI. CONCLUSION

A novel supervised algorithm based on the immune network
theory, ABNet, was designed and implemented for classifica-
tions of multi-/hyperspectral remote sensing images. To con-
struct the ABNet, the concept and model of artificial antibody
(AB) was proposed based on immune network theory and
previous work. According to the model, every AB has two
important attributes, its center vector and recognizing radius.
Within the range of the recognizing radius, all antigens can be
recognized by the AB. During the course of training, the sets
of AB corresponding to every class were adaptively obtained
by training all antigens, i.e., the recognizing radius and center
vector of every AB were determined. At the same time, ABNet
was built up successfully by utilizing the obtained AB.

Experiments were carried out to test the performance of
ABNet using different types of images. The experimental
results consistently show that ABNet has high classification
accuracy. When compared with traditional supervised classi-
fiers (MD, GML, and BPNN) and the previous artificial im-

mune classifiers (MVINC and RLCRSI), ABNet has consis-
tently demonstrated its better overall performance, even though
ABNet is not necessarily superior than other classifiers in
per-class classification accuracy. McNemar’s tests suggest that
ABNet is significantly different compared to other classifiers,
with the McNemar value above the critical value X%o.05.1)
(3.841459). Comparison among three artificial immune classi-
fiers indicates that MVINC requires less computation time than
ABNet and RLCRSI, but its classification accuracy is lower,
particularly for AVIRIS hyperspectral image. Being similar to
ABNet, RLCRS was also inspired by the biological immune
mechanism and has high classification accuracy. However,
RLCRSI needed more user-defined parameters to control the
classification results, such as stimulation threshold, total re-
source, and ATS. In contrast, ABNet can adaptively build up
the network and guarantee its convergence. This demonstrates
that the proposed algorithm is not only able to classify multi-
/hyperspectral remote sensing images but also a very com-
petent classifier for processing high volumes of data. Conse-
quently, ABNet provides an effective option for remote sensing
image classification. In our future work, we will investigate
the method to decrease the number of unclassified antigens
which are not recognized by any artificial antibody in the
trained ABNet, for example, kernel covering algorithms [51].
In addition, we plan to enhance our classifiers by considering
feature selection or extraction using other AIS models in high-
dimensional feature space to avoid the Hughes phenomena [52].
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