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The resource limited artificial immune system (RLAIS), a new computational

intelligence approach, is being increasingly recognized as one of the most

competitive methods for data clustering and analysis. Nevertheless, owing to the

inherent complexity of the conventional RLAIS algorithm, its application to

multi/hyper-class remote sensing image classification has been considerably

limited. This paper explores a novel artificial immune algorithm based on the

resource limited principles for supervised multi/hyper-spectral image classifica-

tion. Three experiments with different types of images were performed to

evaluate the performance of the proposed algorithm in comparison with other

traditional image classification algorithms: parallelepiped, minimum distance,

maximum likelihood, K-nearest neighbour and back-propagation neural net-

work. The results show that the proposed algorithm consistently outperforms the

traditional algorithms in all the experiments and hence provides an effective new

option for processing multi/hyper spectral remote sensing images.

1. Introduction

Artificial immune systems (AIS) have recently drawn increased attention from the

artificial intelligence community. AIS were inspired by the human immune system

and have been exploited in a wide spectrum of applications (Dasgupta 1999, De

Castro and Timmis 2002). Some application examples include pattern recognition

(Carter 2000, Tarakanov and Skormin 2002), intrusion detection (Forrest et al.

1994, Kim and Bentley 2001), clustering (Timmis et al. 2000, 2001), and

optimization (De Castro and Von Zuben 2002). In particular, a novel immune

model, namely resource limited artificial immune system (RLAIS) (Timmis et al.

2000, 2001), has been devised for data analysis and clustering using a population

control mechanism. Based on this model, an artificial immune recognition system

(AIR) for general purpose supervised classification was developed (Watkins and

Boggess 2002).
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Despite the successful applications of AIS, RLAIS, and AIR in several domains,

only few applications have been reported in the area of remote sensing (Zhang et al.

2004). This may be attributed to the high computational costs associated with the

original AIS algorithm, thus rendering it unsuitable for remote sensing image

classification. The huge volume of multi/hyper-spectral remote sensing image data

may be another impediment. To overcome these problems, this study develops a

novel algorithm based on RLAIS for supervised multi/hyper-spectral remote sensing

image classification.

Classification is a fundamental issue in image processing, and various supervised

algorithms, such as parallelepiped (PP), minimum distance (MD), maximum

likelihood (ML) and K-nearest neighbour (K-NN) have been developed in the past

several decades for classifying multi/hyper-spectral data in a pixel-wise manner

(Campbell 2002, Landgrebe 2002). The PP classifier (Campbell 2002), also known as

box decision rule, is probably the simplest among the above-mentioned algorithms.

This algorithm relies on the ranges of values within the training data to define regions

within a multidimensional data space. The MD classifier (Duda et al. 2001) uses the

central values of the spectral data that form the training dataset to assign pixels to

information categories. The K-NN algorithm (Campbell 2002) assumes that pixels

close to each other in the feature space are likely to fall in the same class. It then

assigns the classification of the majority vote among the K nearest neighbours in the

training samples to the pixel in question. The familiar ML classifier is a powerful

classification technique based on the maximum likelihood decision rule. The rule

assumes that both the training data and the classes themselves usually present

multivariate normal frequency distributions (Campbell 2002). To improve on the

classification performance, several new classifiers have also been devised for multi/

hyper-spectral remote sensing image classification such as artificial neural networks

(Heermann and Khazenie 1992, Carpenter et al. 1997), genetic algorithms (Tso and

Mather 1999) and support vector machines (Melgani and Bruzzone 2004).

Unlike the aforementioned classification algorithms, the proposed algorithm

based on RLAIS is a robust self-learning algorithm. In particular, the algorithm is

novel in the following aspects:

a. It is a data driven self-adaptive method and can thus adjust itself to the data

without any explicit specification of functional or distributional form for the

underlying model.

b. It is viewed as a universal functional approximator since it can approximate

any function through arbitrary accuracy.

c. It utilizes an immune model making it flexible in modelling real world

complex relationships through immunological properties, such as memory

property and clonal selection.

The proposed algorithm, when examined with various multi/hyper-spectral

images, demonstrates high classification accuracy, thus providing a new option

for multi/hyper-spectral remote sensing image classification.

The rest of the paper is structured as follows. Section 2 gives an overview of the

human immune system and resource limited AIS. Section 3 details the proposed

method and algorithm, while section 4 illustrates the performance of the proposed

algorithm compared with the traditional algorithms. Section 5 analyses the

sensitivity of the proposed algorithm in relation to its main parameters. Finally,

section 6 concludes the paper.
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2. Resource limited artificial immune system (RLAIS)

2.1 Human immune system

The human immune system is a complex system made up of cells, molecules and

organs that together constitute an identification mechanism capable of perceiving

and combating dysfunction from our own cells and the action of exogenous

infectious micro-organisms as well. The human immune system safeguards us

against infectious agents such as viruses, bacteria, fungi, and other parasites. Any

molecule that can be recognized by the adaptive immune system is known as an

antigen. Lymphocytes or the white blood cells are the fundamental components of

the immune system. Within the human body, lymphocytes are found in two forms, B

cells and T cells. Functionally, these two types of cells differ in their mode of antigen

recognition. B-cells are capable of recognizing antigens free in solution, while T cells

require antigens to be presented by other accessory cells. Each has its distinct

chemical structure and produces many Y-shaped antibodies from its surface to kill

the antigens. Antibodies are molecules attached primarily to the surface of B cells

whose aim is to recognize and bind to antigens (Jerne 1973).

The immune system possesses several properties such as self/non-self discrimina-

tion immunological memory, positive/negative selection, immunological network,

clonal selection and learning which performs complex tasks. In particular,

immunological memory is the ability of the adaptive immune system to mount a

more effective immune response against antigen after its first encounter, leaving the

body better able to resist in the future (Timmis et al. 2001).

2.2 RLAIS

RLAIS is modelled primarily on the mechanisms of the B-cells in the biological

immune system. The RLAIS exhibits behaviour such that once a strong pattern has

been identified the network will not deteriorate or lose the pattern (Timmis et al.

2000, 2001). RLAIS was proposed not only for clustering as one shot learning, but

also for the system to perform continuous learning.

Antigens in RLAIS are instantiated as feature vectors that are presented to the

system during training and testing. Table 1 summarizes the mapping between the

immune system and RLAIS. In particular, RLAIS adopts the concept of artificial

recognition balls (ARBs). Each ARB can be thought of as a representation of

numerous B-cells, all of which have the same antibody. ARBs, otherwise known as

resources, are limited to a finite number and are responsible for the primary memory

mechanism in the immune system. When ARBs are cloned, they must undergo

Table 1. Mapping between the immune system and RLAIS.

Immune system RLAIS

Antibody Feature vector
Recognition ball Combination of feature vector and vector class
Shape-space The possible values of the data vector
Clonal expansion Reproduction of ARBs that are well matched with antigens
Antigens Training data
Affinity maturation Random mutation of ARB and removal of lowest stimulated ARBs
Immune memory Memory set of mutated ARBs
Metadynamics Continual removal and creation of ARBs and memory cells

RLAIS algorithm for supervised classification 1667
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affinity mutation inversely proportional to the antigenic affinity: the higher the

affinity, the smaller the mutation rate. The term metadynamics of the immune

system refers to the continuous change of the ARB population through antibodies

proliferation and death. The above process is embedded in RLAIS with the

continual creation and removal of antibodies with lower affinity from the

population.

A key issue for applying AIS to classification is related to the development of the

memory cell pool. RLAIS has the ability to limit the size of the memory cell pool to

develop the memory cell population which will be further used to classify test

instances.

In a RLAIS, the training of an antigen, Ag, and the processing of each ARB are

conducted through a resource allocation mechanism according to the stimulation

level between the ARB and Ag. It is assumed that the whole resource of RLAIS is

fixed or set by users. ARBs are stimulated through a response to an invading

antigen. After exposure to a given antigen (or antigen population), each ARB

attempts to consume resources based on its stimulation level. However, since the

numbers of resources are finite, only the most stimulated ARBs will actually

consume resources. The remaining ARBs (i.e. those without resources) are removed

from the system. This competition for resources applies a certain amount of

evolutionary pressure to ensure that only the strongest ARBs (i.e. those most adept

at recognizing antigens) remain in the system.

The regulating process of RLAIS is that we calculate the average stimulation for

each ARB, and check for the termination condition. If the average stimulation value

of each ARB class group is less than a given threshold, the process will continue. In

the above process, the system resources are allocated to a given ARB based on its

normalized stimulation value, which is also used as an indication of its affinity being

a recognizer of the training antigen. If the resource of ARB is more than the

allowable threshold, the worst antibody with the lowest stimulation in ARB will be

continuously removed until the resource decreases to the allowable range (Watkins

and Boggess 2002).

3. Resource-limited classification of remote sensing image (RLCRSI)

In RLAIS, the stimulation value of an ARB and the distribution of resources are

based on the class of the ARB, which increases the complexity of the system.

However, if the regions of interest or samples are selected humanly from a remote

sensing image or a spectral library, each region of interest or sample can be

represented as an individual class. Thus, maintaining class diversity is not necessary

in this case. Based on RLAIS, the resources are only allocated to ARBs of the same

class as the antigen and in proportion to the inverse of an ARB’s affinity to the

antigen. As a result, the computational cost of the corresponding algorithm

decreases without sacrificing the classification accuracy.

In the proposed algorithm, RLCRSI, the stopping criterion of the training

process no longer takes into account the stimulation value of ARBs in all classes,

but only accounts for the stimulation value of the ARBs of the same class as the

antigen. This will not affect the stopping criterion since the changes to the proposed

algorithm now only require that the average stimulation value of the ARBs of the

same class as the antigen be above the stimulation threshold.

The above process is illustrated in figure 1 by a simple example in two-

dimensional feature space. At first, a training antigen is presented to the ARB in the

1668 L. Zhang et al.
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Figure 1. The principle of RLCRSI. (a) ARB selected, (b) the memory cell clones and
mutates, producing new antibody and a candidate memory cell (antibodies with lower
stimulation level are removed), (c) ARB pool is evolved.
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same class as the antigen (figure 1 (a)). In the ARB, once the memory cell with the

highest stimulation level to the antigen is then sufficiently stimulated and rapidly

produces clones of itself. Meanwhile, the clones undergo a mutation process at

particular sites in its gene to produce new antibodies. Each antibody must compete

for a fixed amount of resources: if the resources of any antibody are out of the

allowable range, it will be removed from the ARB pool (figure 1 (b)). The highest

stimulation antibody is selected as a candidate memory cell, mccandidate, to evolve the

memory cell, which is able to match the antigen more closely (figure 1 (c)). The

evolved memory cells will be used for the classification.

The implementation of RLCRSI includes the following six steps:

1. Selection of the regions of interest or samples.

2. Normalization and initialization.

3. ARB generation.

4. Competition for resources and nomination of candidate memory cells.

5. Promotion of candidate memory cells into memory cell pool. Through the five

steps above, the memory cells are selected and used to classify a multi/hyper-

spectral remote sensing image into step 6).

6. Classification.

These steps are detailed as follows:

3.1 Selection of regions of interest or samples

Based on the characteristics of the remote sensing image (e.g., texture, pixel’s grey

level) and application purposes, regions of interest or samples can be selected from

an image or a spectral library.

3.2 Normalization and initialization

All feature vectors are firstly normalized such that the distances between antigens

and ARBs or between two ARBs are in the range [0, 1]. Secondly, calculate the

affinity threshold, which will be used to determine whether a new memory cell is

close enough to an existing memory cell to replace it. For training sets of fixed size,

the affinity threshold (AT) is the average affinity, which is calculated pair-wise over

all training instances. If the training set is considered as antigens, the affinity

threshold is calculated as:

AT~

Pn{1

i~1

Pn

j~iz1

affinity agi, agj

� �

n n{1ð Þ=2
ð1Þ

where n is the number of training data items, agi and agj are the ith and jth training

antigen respectively, and affinity (x, y) returns the Euclidean distance between the

two antigens feature vectors. The final step in initialization is the seeding of the

memory cells and initial ARB population. This is performed by randomly choosing

training antigens to be added to the set of memory cells and to the set of ARBs.

3.3 ARB generation

After initialization is completed, the next step is the identification of memory cells

and ARB generations. Given a specific training antigen, ag, find the memory cell,

1670 L. Zhang et al.
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mcmatch, which has the same class as the antigen and is most stimulated by the

antigen. The formula for the identification of the memory cell is given as follows:

mcmatch~arg maxmc [MCag:c
stimulation(ag, mc) ð2Þ

where stimulation (x, y) is defined as:

stimulation x, yð Þ~1{Affinity x, yð Þ ð3Þ

Affinity x, yð Þ~Euclidean dis tan ce x, yð Þ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xbm

i~1

xi{yið Þ2
v
u
u
t ð4Þ

where bm5the band number of the remote sensing image.

Once the memory cell with highest stimulation, mcmatch, is identified, it generates

new ARBs to place into the population of pre-existing ARBs. The algorithm creates

NClones, which are new clones of mcmatch. Each feature of the clone can be mutated

with probability mutation_rate. NClones is defined as:

NClones~hyper clonal rate�clonal rate�stimulation ag, mcmatchð Þ ð5Þ

where the hyper_clonal_rate and clonal_rate are integer values set by the user. The

clonal_rate is used to determine how many clones are produced by ARBs and

memory cells. Its typical value is 10. The hyper_clonal_rate is a multiplier which

ensures that a hyper-mutating memory cell produce more new cells than a standard

ARB.

3.4 Competition for resources and development of a candidate memory cell,
mccandidate

Let AB represent the set of ARBs and ab represent a single ARB, ab g AB. At this

point, a set of ARBs which include mcmatch, mutations from mcmatch, and remnant

ARBs from responses to previously encountered antigens is already generated. The

detailed training procedure is described as follows:

3.4.1 Normalizing ARBs stimulation level and calculating the resources.

1. Firstly, find the maximum stimulation and minimum stimulation among all

the ARBs.

2. For each ab g AB, normalize its stimulation according to equation (6):

ab:stim~
ab:stim{min stim

max stim{min stim
ð6Þ

3. For each ab g AB, calculate ab’s resources based on its stimulation level as

follows:

ab:resources~ab:stim�clonal rate ð7Þ

4. Metadynamics of ARBs. Sum all the resources of ARBs and named them as

resAlloc. If this allocation of resources results in more resources being

allocated across the population than allowed, then resources are removed

from the weakest ARBs until the total number of resources in the system

RLAIS algorithm for supervised classification 1671
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returns to the number of resources allowed. Those ARBs with zero resources

are removed from the ARB population.

3.4.2 Stopping criterion for the training procedure. Calculate the average stimula-

tion level. If the average stimulation value of each ARB class group is less than a

given stimulation threshold, the process moves to step 3.4.3, otherwise, jump to step

3.4.5.

3.4.3 Clonal expansion and affinity maturation. For each ab g AB, allow each

ARB in AB the opportunity to produce mutated offspring. Clone and mutate a

randomly selected subset of the ARBs based on the proportion to their stimulation
level. The number of Clones, named NClones, is defined as:

NClones~clonal rate�stimulation ag, mcmatchð Þ ð8Þ

During the course of mutation, the higher the stimulation, the smaller the

mutation rate. The mutation procedure and the corresponding function mutate(x)

are defined in figure 2.

In figure 2, the function Irandom() returns a random value using a uniform

distribution within the range [0,1] and Lrandom also returns a random value but

using a uniform distribution within the range [21,1]. As the evolutional process is

described in real space, the mutation operation uses the non-uniform operator,

which is able to achieve fine local tuning (Michalewicz 1992). The mutation function

D(t, y) is defined as follows:

D t, yð Þ~y 1{r 1{ t
Tð Þl

� �

ð9Þ

where t is the iteration number; T, the maximum of iteration number; r, a random

value in the range [0,1]; l, a parameter to decide the nonconforming degree.

3.4.4 Re-judging stopping criterion. Calculate the average stimulation level. If the

average stimulation value of each ARB class group is less than a given stimulation

threshold, the process repeats from 3.4.1.until the stopping criterion is met.

Figure 2. Mutation.

1672 L. Zhang et al.
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3.4.5 Developing the candidate memory cell, mccandidate. Select the highest affinity
ARB of the same class as the antigen from the last antigenic interaction, as the

candidate memory cell, mccandidate.

3.5 Promoting candidate memory cell to memory cell pool

The final stage in the training process is the potential introduction of the just-

developed candidate memory cell, mccandidate, into the set of existing memory cells,

MC. It is during this stage that the affinity threshold calculated during initialization

becomes critical as it dictates whether the mccandidate will replace mcmatch that was

previously identified. The candidate memory cell is added to the set of memory

cells only if it is more stimulated by the training antigen, ag, than mcmatch, where

stimulation is defined as in equation (3). If this test is passed, and if the affinity
between mccandidate and mcmatch is lesser than the product of the affinity threshold

and the user-defined affinity threshold scalar (ATS), then mccandidate shall replace

mcmatch in the set of memory cells.

Once the candidate memory cell has been evaluated and added into the set of

established memory cells, training on this particular antigen is completed. The next

antigen in the training set, regions of interest, is then selected and the training

process proceeds from step 3.3 to step 3.5. This process continues until all antigens

in all regions of interest have been trained in the proposed algorithm.

3.6 Classification

After training is completed, the evolved memory cells are available for classification.

The classification is performed in a K-NN search approach. Each memory cell is
presented with a data item for stimulation. The system’s classification of each data

item is determined, using a majority vote of the outputs of the k most stimulated

memory cells.

The flowchart for RLCRSI is shown in figure 3.

4. Experiments and analyses

The proposed RLCRSI and the traditional supervised algorithms were all

implemented using Visual C + + 6.0 and tested on different types of images. Three

experiments were carried out to test the performance of the RLCRSI algorithm, of

which the main running parameters are clonal_rate, hyper_clonal_rate, mutation_

rate, stimulation_threshold, the total number of resources (TotalNumResource),
and affinity threshold scalar (ATS). Consistent comparisons were also carried out

between RLCRSI and PP (parallelepiped), MD (minimum distance), ML

(maximum likelihood), K-nearest neighbor (K-NN), and back-propagation neural

network (BP) in all the experiments.

4.1 Experiment 1: TM image

To begin with, an experiment was performed using a 30-metre resolution

multispectral Landsat TM image (4006400 pixels) of the Wuhan city acquired on

26 October 1998 (figure 4). The following four classes were used: water, vegetation,

road and building. Four regions of interests (ROI) representing the four classes,

respectively were selected as training regions and each training region had ground
reference sample points. Figure 5 shows the spectra of the four training regions. The

list of classes and the number of labelled samples for each class are given in table 2.

RLAIS algorithm for supervised classification 1673
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In this experiment, 17-NN was used and the number of hidden nodes and the

learning rate in BP (using 1 hidden layer) were respectively, 20 and 0.25. The main

parameters of RLCRSI were set as follows: clonal_rate510, hyper_clonal_rate52,

mutation_rate50.1, stimulation_threshold50.9, TotalNumResource550, and

ATS50.8.

Figure 6 (a)–(f) illustrates the classification results using RLCRSI and other

algorithms, respectively. To evaluate the classification accuracy, a test field map was

provided in figure 6(g) based on the ground truth data.

The visual comparisons of the six supervised classifications in figure 6 show

varying degrees of pixel assignment accuracy. The six classifiers generate similar

classification results in the water class. Still, it is hard for PP to differentiate among

Figure 3. Flowchart for RLCRSI.
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other classes and many unknown pixels (black pixels) exist in its classified image

(figure 6(b)). Although MD and K-NN can recognize buildings and roads, they

cannot distinguish the vegetation class. ML can make a distinction of vegetation

from other classes; however, it surprisingly misclassified the water pixels in the right

of the image to the building class. Furthermore, BP is competent in the classification
though some building pixels are misclassified to vegetation. Nevertheless, RLCRSI

Figure 4. Wuhan TM image RGB (3, 2, 1).

Figure 5. Spectra of four classes.
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achieves the best visual accuracy in the vegetation class than other classifiers and

also performs satisfactorily on the building and road classes.

Table 3 shows the comparison of RLCRSI with the five other classifiers in terms

of overall accuracy, Kappa coefficient, and computation time. Clearly, RLCRSI

Figure 6. Supervised classification of Wuhan TM image.

Table 2. List of classes and number of labelled samples in each
class for experiment 1.

Class name Number of labelled samples

Water 7090
Vegetation 6414
Road 7173
Building 6430
Total number of samples 27107

1676 L. Zhang et al.
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performs the best with the overall accuracy of 92.33% and Kappa coefficient of

0.891. This is followed by BP, ML, K-NN, MD and lastly, PP. Although the

computation time of RLCRSI is higher than ML, it may be reduced by selecting the

appropriate parameters. This will be investigated in our future work.

The comparatively high accuracy achieved by RLCRSI is attributed to the fact

that ML assumes that both training data and the classes themselves present

multivariate normal (Gaussian) frequency distributions (Campbell 2002). However,

due to the complexity of ground substances and the diversity of disturbance, data

from remotely sensed images often do not strictly adhere to this rule, thus leading to

the relatively poor performance. BP and K-NN may achieve better accuracy;

however they require much higher computational costs. BP’s accuracy is

significantly influenced by the training data. By contrast, RLCRSI is a kind of

data driven self-adaptive method which can adjust itself to the data without any

explicit specification of functional or distributional form for the underlying model.

RLCRSI can approximate any function with arbitrary accuracy by a universal

functional approximation. In addition, RLCRSI adopts an immune model

rendering it flexible in modelling the complex relationships between classes. These

enable RLCRSI to achieve the best accuracy.

4.2 Experiment 2: MODIS image

In this experiment, a MODIS image (acquired on 2 April 2002) of an area also in

Wuhan was tested. The level 1B data sets include the 500 metre reflectance data for

channels 3–7. These five spectral channels are ordered by ascending wavelengths at

0.46–0.48, 0.55–0.57, 1.63–1.65 and 2.11–2.16 mm, respectively. The classifications

were performed using four regions of interest (ROI), namely water, cloud, city, and

vegetation. Figure 7 shows the experimental MODIS image and figure 8 shows the

spectra of the four training regions. The list of classes and the number of labelled

samples for each class are given in table 4.

In the classification calculation, 17-NN was applied and the number of hidden

nodes and the learning rate in BP (using 1 hidden layer) were respectively, 20 and

0.25. The parameters for RLCRSI were set as follows: clonal_rate510, hyper_clonal

_rate52, mutation_rate50.1, stimulation_threshold50.85, TotalNumResource550,

and ATS50.8.

Figure 9(a)–(f) illustrates the classification results using RLCRSI, PP, MD, ML,

K-NN (17-NN), and BP (using one hidden layer), respectively. To evaluate the

classification accuracy, a test field map was provided in figure 9(g) based on the

ground truth data. The classification accuracy and CPU time for all the classifiers

are given in table 5.

Table 3. Comparison of RLCRSI with other algorithms in classifying the TM image.

Accuracy
Parallelepiped

(PP)

Minimum
distance
(MD)

Maximum
likelihood

(ML)
K-NN

(17-KNN)

BP (one
hidden
layer) RLCRSI

Overall accuracy
(%)

58.36 77.31 88.31 81.44 89.22 92.33

Kappa coefficient 0.5133 0.7213 0.8314 0.7867 0.8523 0.891
Time (s) 1.1 1.1 2.4 6.5 50.8 5.2
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As shown in figure 9, RLCRSI achieves better visual results. By contrast, PP has

many unclassified pixels; ML, MD and BP cannot recognize well the city class. In

particular, MD misclassifies many pixels of other classes to the cloud class. K-NN

and RLCRSI are more capable of differentiating the city class from other classes,

whereas K-NN cannot distinguish the vegetation class which is misclassified to other

classes. In addition, table 5 shows that the RLCRSI classifier produces better

classifications than the traditional classifiers. RLCRSI improves the overall

Figure 7. WUHAN MODIS image.

Figure 8. Spectral values of four classes.
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classification accuracy from 67.44% using PP to 93.67%, and the Kappa coefficient

from 0.6122 to 0.91 with the reasonable computational time, 5.4 s. This shows that

RLCRSI is a very competent classifier for remote sensing imagery.

Table 4. List of classes and number of labelled samples in
each class for experiment 2.

Class name Number of labelled samples

Water 2045
Vegetation 1149
City 1374
Cloud 1247
Total number of samples 5815

Figure 9. Supervised classification of Wuhan MODIS image.
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4.3 Experiment 3: PHI image

The data for this experiment was collected with an airborne imaging spectrometer

(PHI) from the Xiaqiao test site, a mixed agricultural area. 80 bands of the PHI

image (3406390 pixels) were utilized, and their spectral ranges were from 0.417 to

0.854 mm. The classification was performed using seven regions of interest. These

regions representing the four classes respectively were selected as training regions.

Figure 10 shows the PHI image and figure 11 shows the spectra profile of the seven

training regions. The list of classes and the number of labelled samples for each class

are given in table 6.

In this classification experiment, 17-NN was used and the number of hidden

nodes and the learning rate in BP (using one hidden layer) were respectively, 30 and

0.25. The parameters for RLCRSI were defined as: clonal_rate510, hyper_clonal_

rate52, mutation_rate50.1, stimulation_threshold50.85, TotalNumResource550,

and ATS50.8.

Figure 12(a) illustrates the classification result using RLCRSI. Figures 12(b)–(f)

illustrate the classification results using PP, MD, ML, K-NN (17-NN), and BP

(using one hidden layer), respectively. To evaluate the classification accuracy, a test

field map was also provided in figure 12(g) based on the ground truth data. The

classification accuracy for the six classifiers is given in table 7.

Table 5. Comparison of RLCRSI with other algorithms in classifying the MODIS image.

Accuracy
Parallelepiped

(PP)

Minimum
distance
(MD)

Maximum
likelihood

(ML)
K-NN

(17-KNN)

BP (one
hidden
layer) RLCRSI

Overall accuracy
(%)

67.44 79.35 86.87 81.47 87.88 93.67

Kappa coefficient 0.6122 0.7343 0.8333 0.7767 0.8439 0.91
Time (s) 1.5 1.5 3.5 10.4 60 5.4

Figure 10. Xiaqiao PHI image.
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As shown in table 6, once again, RLCRSI achieves the highest overall accuracy

and Kappa coefficient among the six classifiers. It improves the overall accuracy

from 54.21% using PP to 90.15% (i.e. by 35.94%) and Kappa coefficient from 0.50 to

0.88 (i.e. by 0.38) with the satisfactory computational time, 15.5 s. This demonstrates

that RLCRSI excels in hyper-spectral image classification.

5. Sensitivity analysis of RLCRSI

RLCRSI has three main user-defined parameters that significantly influence:

(i) the number of memory cells; and

(ii) the computational complexity of the algorithm:

N clonal_rate: the rate of clonal antibody,

N stimulation threshold: the stopping criterion for the training procedure,

N ATS: affinity threshold scalar which affects the number of memory cell

population and computational.

Figure 11. Spectra of the seven classes.

Table 6. List of classes and number of labelled samples in each
class for experiment 3.

Class name Number of labelled samples

Road 716
Corn 1430
Vegetable 1030
Tree 263
Grass 255
Water 492
Soil 585
Total number of samples 4771

RLAIS algorithm for supervised classification 1681
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Figure 12. Supervised classification of XiaQiao PHI image.

Table 7. Comparison of RLCRSI with other algorithms in classifying the PHI image.

Accuracy
Parallelepiped

(PP)

Minimum
distance
(MD)

Maximum
likelihood

(ML)
K-NN

(17-KNN)

BP (one
hidden
layer) RLCRSI

Overall accuracy
(%)

54.21 78.62 86.13 80.31 86.63 90.15

Kappa coefficient 0.50 0.75 0.835 0.7897 0.8371 0.88
Time (s) 3.4 3.8 8.2 50.8 120.3 15.5
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In order to analyse the effects of these parameters on RLCRSI, the Wuhan TM

image, shown in figure 4, was classified using different parameter values.

5.1 Sensitivity in relation to clonal_rate

In order to study the RLCRSI sensitivity in relation to clonal_rate, other parameters

were set as the same as those in experiment 1 and the clonal_rate was tested with the

following values: clonal_rate5{5, 10, 15, 20, 25, 35, 40, 50}.

Figure 13 shows that the higher the clonal_rate, the more the computation time.

Particularly, when the clonal_rate increases from 10 to 50, the CPU time sharply

increases from 5.2s to 61s while the overall accuracy of classification just shows

slight improvement from 92.33% to 92.87%

5.2 Sensitivity in relation to ATS

Affinity threshold scalar (ATS) plays a very important role in maintaining the

diversity of memory cell population and updating the memory cell population. In

this test, the other parameters are maintained the same as in experiment 1 and ATS

was assigned the following values: ATS5{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1}. As figure 14 shows, the number of memory cells decreases from 1523 to 4, while

ATS increases from 0 to 1.0. The number of memory cells is the sum of the memory

cells in each class.

It should be noted that when ATS50.0, the memory cell population is the largest,

leading to better classification results. However, more computational time is

required. For large size remote sensing datasets, the appropriate value of ATS

should be carefully selected. It is also interesting to observe that the number of

memory cells is equal to the number of classes when ATS51.0.

5.3 Sensitivity in relation to stimulation threshold

Stimulation threshold as a stopping criterion is closely related to the classification

accuracy. Similar to the last test, other parameters were maintained the same as in

Figure 13. RLCRSI sensitivity in relation to clonal_rate.
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experiment 1. The stimulation threshold was assumed with the following values:

stimulation threshold5{0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}. As shown in
figure 15, the overall accuracy increases from 65% to 92.5% while the stimulation

threshold increases from 0.5 to 0.95.

Figure 15 illustrates that the bigger the stimulation threshold, the higher the

overall accuracy. The computational cost, however, also increases. In particular,

when the stimulation threshold is above 0.85, the overall classification accuracy is

only improved from 91% to 92.5%. Therefore, the value of stimulation threshold,

0.9 or 0.85, is often chosen in our practical applications.

6. Conclusions

This paper provides an introduction of AIS in the context of remote sensing

classification problems. A novel classifier, RLCRSI, was developed for multi/

Figure 14. RLCRSI sensitivity in relation to ATS.

Figure 15. RLCRSI sensitivity in relation to stimulation threshold.
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hyper-spectral classification based on the paradigm of improved AIS, i.e. resource

limited AIS. RLCRSI is capable of performing data reduction by generating a

representative set of memory cells for classification. This set has fewer cells than the

original training instances.

A series of experiments were performed to test the performance of RLCRSI using

different types of images. Compared to the traditional classifiers, RLCRSI has

consistently demonstrated its better performance. In the three experiments, the

average classification accuracy was improved from 60% using PP, 87.1% using ML,

and 87.91% using BP, to 92.05%; and the Kappa coefficient improved from 0.5418

using PP, 0.8333 using ML, and 0.8444 using BP, to 0.8937 with the acceptable

computational cost. This shows that the proposed method is not only suitable for

multi/hyper spectral remote sensing image classification, but also proficiently

handles high-volume data processing. Consequently, RLCRSI provides an effective

option for remote sensing image classification. In our future work, AIS and

RLCSRI will be further explored for more extensive remote sensing applications.
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