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In this article, the artificial immune network (aiNet) model, a computational intel-
ligent approach based on artificial immune networks (AINs), is applied to remote
sensing image processing to improve its intelligence. aiNet has been utilized for
clustering, optimization, and data analysis. Nevertheless, due to the inherent com-
plexity of the aiNet algorithm and the large volume of data in remote sensing
imagery, the application of aiNet to remote sensing image classification has been
rather limited. This article presents an unsupervised artificial immune network
for remote sensing image classification (RSUAIN) based on aiNet. The proposed
method can adaptively obtain some user-defined parameters, such as clone rate
and mutation rate, and evolve the memorial immune network by immune oper-
ators and biological properties, such as clone, mutation and memory operators,
using the remote sensing image for the task of remote sensing image clustering.
Three experiments with different types of images were performed to evaluate the
performance of the proposed algorithm and to compare it with other traditional
unsupervised classification algorithms, for example, k-means, ISODATA (Iterative
Self-organizing Data Anaysis Techniques Algorithm) and fuzzy k-means. RSUAIN
was observed to outperform the traditional algorithms in the three experiments
and hence potentially provides an effective option for unsupervised remote sensing
image classification.

1. Introduction

Artificial immune networks (AINs), derived from immune network theory, are impor-
tant and effective models of artificial immune systems (AISs) and have been success-
fully applied to pattern recognition, parallel distributed processing and data analysis
(Dasgupta 1999, De Castro and Timmis 2002a). In particular, a novel immune net-
work model, namely the artificial immune network (aiNet), has been shown to be
effective for data clustering (De Castro and Von Zuben 2000, 2001, De Castro and
Timmis 2002b), multimodal function optimization (De Castro and Timmis 2002c,
Timmis and Edmonds 2004) and multimodal electromagnetic problems (Campelo
et al. 2006). However, only a few applications of AINs have been reported in the field
of remote sensing (Zhang et al. 2007, Zhong et al. 2007, Pal 2008). The slow adaption
of AINs may be attributed to the high computational costs arising from the original
algorithm with the large volume of remote sensing data, which render it less attractive
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5462 Y. Zhong et al.

for remote sensing image classification. For example, aiNet has been applied to the
clustering of standard datasets (iris data, wine data, etc.) (Liu and Xu 2006), which
were usually far smaller than remote sensing images. The large number of user-defined
parameters is another problem. To overcome these shortcomings and benefit from the
advantages of aiNet for clustering, this article exploits an artificial immune network
to perform unsupervised remote sensing image classification.

Compared to supervised classification, unsupervised remote sensing image classi-
fication normally requires only a minimal amount of initial input from the analyst
because clustering does not normally require training data (Jensen 2005). Traditional
unsupervised classification algorithms, such as k-means (Duda et al. 2001) and the
Iterative Self-organizing Data Anaysis Techniques Algorithm (ISODATA) (Hall and
Ball 1965), use iterative calculations to find an optimum set of decision boundaries for
clustering. The ISODATA is a more sophisticated version of k-means, which allows
classes to be split and merged. For the above hard partitional clustering, each pattern
only belongs to one cluster. However, a pixel may also be allowed to belong to all
clusters with a degree of membership using the fuzzy clustering algorithms, e.g. fuzzy
k-means (Campbell 2000, Jensen 2005). In addition to the aforementioned algorithms,
Bayesian classifiers (Storvik et al. 2005), Markov random field (Yamazaki and Gingras
1999), Kohonen’s self-organizing maps (SOM) (Bagan et al. 2005) and genetic algo-
rithms (GA) (Bandyopadhyay et al. 2007) have also been employed to obtain better
unsupervised classification results.

This article describes the remote sensing unsupervised artificial immune network
(RSUAIN), which utilizes the advantages of aiNet and is designed to overcome the
shortcomings of the original aiNet for the unsupervised remote sensing image clas-
sification approach. Compared with the conventional aiNet, the proposed algorithm
decreases the number of user-defined parameters required by the adaptive method
in the process of execution and is more suitable for classification of remote sensing
imagery. The proposed algorithm has been tested and compared with other algo-
rithms using various remote sensing images. Experimental results suggest that the
algorithm can achieve high classification accuracy, thus providing an effective option
for unsupervised remote sensing image classification.

2. Artificial immune network model

2.1 Natural immune system

The natural immune system, which is made up of special cells, proteins and organs,
protects organisms from infection with layered defenses of increasing specificity. Most
simply, physical barriers prevent pathogens (called antigens, g) such as bacteria and
viruses from entering the organism. One type of response is the secretion of anti-
body (b) molecules by B cells or B lymphocytes (Jerne 1973). When an antigen is
detected, the B cells that recognize the antigen with best affinity will proliferate by
cloning. Affinity represents the attraction between an antigen and an antibody. During
reproduction, the B-cell clones undergo a hypermutation process where the antigen
stimulates the B cell to proliferate and mature into terminal antibody-secreting cells
that are named plasma cells. The activated B cells with high antigenic affinities are
selected to become memory cells with long life spans (Zhong et al. 2006). These mem-
ory cells guarantee a faster response to similar antigens that may invade the organism
in the future (Coelho and Von Zuben 2006).
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RSUAIN for remote sensing image classification 5463

To explain the memorial and learning capabilities exhibited by the immune sys-
tem, immune network theory was proposed by Jerne (1974) and has been reviewed by
Perelson (1989). It has been suggested that the immune system is composed of a reg-
ulated network of cells and molecules that recognize one another, even in the absence
of antigens. In the artificial immune network, the immune cells can respond either
positively or negatively to the recognition signal (antigen or other immune cell or
molecule). A positive response results in cell proliferation, cell activation and antibody
secretion, while a negative response leads to tolerance and suppression. The suppres-
sion mechanism guarantees the appropriate number of antibodies, from which one is
removed if some suppression condition is satisfied, such as low affinity.

2.2 Artificial immune network model

As a novel artificial immune network model based on immune network theory, aiNet
was proposed for performing data analysis and clustering tasks (De Castro and Von
Zuben 2000, 2001). It generates a network of antibodies linked according to affinity
(Euclidean distance in the feature space). A subset of the antibodies with the highest
affinity with respect to a given antigen is selected and cloned proportionally to the
affinity. All generated clones are mutated inversely to their affinity. A fixed percent-
age of clones is selected to be memory antibodies, by eliminating those whose affinity
with the current antigen is less than a death threshold. If a pair of memory antibodies
have an affinity greater than a suppression threshold, one of them is removed from the
network (Galeano et al. 2005). The above process is illustrated in figure 1 by a sim-
ple clustering example (De Castro and Von Zuben 2001). As an illustration, suppose
there is a dataset composed of three regions with a high density of data as shown in
figure 1(a). A hypothetical network architecture generated by the learning algorithm
to be presented is shown in figure 1(b). The numbers within the memory cells indicate
their labels, the number next to the connections represents their strengths, and the
dashed lines suggest connections to be pruned, in order to detect clusters and define
the final network structure. It is worth noting that the total number of memory cells
is generally higher than the number of clusters and much smaller than the number of
samples.

(a) (b)

Figure 1. The principle of aiNet. (a) The dataset with three clusters (A, B, C) of high data
density. (b) aiNetwork of labelled cells with their connection strengths assigned to the links. The
dashed lines indicate connections to be pruned in order to generate disconnected sub-graphs,
each characterizing a different cluster in the network (revised from De Castro and Von Zuben
2001).
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5464 Y. Zhong et al.

Many researchers have proposed different versions of immune network algorithms
based on aiNet for different applications (Coelho and Von Zuben 2006) including
opt-aiNet (Artificial Immune Network for Optimization; De Castro and Timmis
2002c, Timmis and Edmonds 2004), copt-aiNet as an extension of opt-aiNet for
combinatorial optimization tasks (Gomes et al. 2003), dopt-aiNet (Artificial Immune
Network for Dynamic Optimization; De Franca et al. 2005), Omni-aiNet (Artificial
Immune Network for Omni-optimization; Coelho and Von Zuben 2006), and M-aiNet
(modified aiNet; Campelo et al. 2006). In addition, aiNet has been applied to artificial
neural network training (Pasti and De Castro 2006) and quantity and position deter-
mination of radial basis functions (RBFs) of the RBF neural network (De Castro and
Von Zuben 2002).

These proposed aiNet or modified aiNet models have been applied successfully for
data analysis, clustering and optimization; however, it is difficult to apply current
aiNet series models to remote sensing image classification. The reasons are as follows:
(a) current models require the storage and manipulation of a large network of B cells;
(b) there are too many user-defined parameters in the current models – for example,
clone rate and mutation rate usually need to be defined by the user; (c) the method of
calculating the affinity in aiNet is not easily adapted to remote sensing image classifi-
cation. The affinity is usually obtained by a reciprocal of the Euclidean distance in the
feature space between the antigen and antibody to let the value lie within the range
[0, 1] in these proposed network models; however, the value of affinity is very small
because the Euclidean distance between two pixels in the feature space is often large
in remote sensing image classification. That is, the affinity calculated by the Euclidean
distance makes it difficult to make a distinction between good and bad antibodies or
memory cells and (d) these current aiNet models do not have a parameter represent-
ing the number of classes. They often obtain the number of classes by analysing the
clustering graph of all antibodies after the clustering process. The method is only effec-
tive when the feature-dimension is less than three because the visualization of higher
dimensions is a difficult problem; however, the dimension of remote sensing images is
often larger than three, for example seven bands in a Landsat TM image.

To overcome these obstacles and utilize the advantages of aiNet to improve the
accuracy of image classification, this article proposes a novel unsupervised artificial
immune network for remote sensing image classification (RSUAIN), based on aiNet.

3. Unsupervised artificial immune network for remote sensing image
classification

This section describes the proposed new classification method. At the end of the
section, the new algorithm is compared to an earlier unsupervised artificial immune
classifier (UAIC) (Zhong et al. 2006). RSUAIN addresses the above problems of aiNet
as follows: (a) To decrease the number of B cells and memory cells, RSUAIN evolves
the memory cell population after the evolution of each antigen, not after each iteration
of aiNet. The proposed algorithm maintains the appropriate number of memory cells.
(b) Some user-defined parameters, such as clone rate and mutation rate, are adaptively
obtained in RSUAIN. (c) RSUAIN calculates the affinity based on the Spectral Angle
Mapper (SAM) algorithm to adapt to the task of remote sensing image classification.
(d) In RSUAIN, a parameter representing the number of classes is added.

The following notations are used to describe RSUAIN (Zhong et al. 2006):
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RSUAIN for remote sensing image classification 5465

• Let G and B denote the set of antigens and antibodies, with b and g representing
a single antibody and a single antigen, respectively, where b ∈ B and g ∈ G.

• Let M represent the set of memory cells or memory matrix and m represent an
individual member of this set. Mc represents the memory cell’s set of the cth class
such that Mc ⊆M = {M1 ∪M2 ∪ · · ·Mnc} and m ∈Mc = {m |m.c ≡ c}.

• Let g.c and m.c represent the class of a given antigen and memory cell, g and m,
respectively, where m.c ∈ C and g.c ∈ C, C = {1, 2, . . ., nc}, nc is the number of
classes in the dataset.

The proposed algorithm is as follows.

3.1 Initialization

The initialization stage can be conceptualized as a data preprocessing stage combined
with a parameter discovery stage (Zhong et al. 2006). RSUAIN selects randomly
NB antibodies from the G to constitute the B and applies the MaxMin algorithm
(Katsavounidis 1994) to the initial memory cell population M from B. In this case, the
initial memory cell population is obtained by the successive selection of representative
instances until nc memory cells have been found.

3.2 Initial classification of G using RSUAIN

The remote sensing image is classified according to the initial memory cell population.
The attribute of the class of each antigen ag in the remote sensing image is assigned to
the class of m, g.c ≡ m.c ∈. C = {1, 2, . . ., nc}.

m = arg max
m∈M

affinity(g, m) (1)

A spectral angle mapper (SAM) (Kruse et al. 1993) is used to describe the feature
space distance between two pixels, x and y, α(x, y). Let vector x = (x1, x2, . . . , xNb )
and y = (y1, y2, . . . , yNb ), where Nb is the band number of the remote sensing image.
Then the distance between x and y is given by

α(x, y) = cos−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Nb∑
i=1

xiyi

[
Nb∑
i=1

(xi)2

]1/2 [
Nb∑
i=1

(yi)2

]1/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2)

The smaller the spectral angle, α(x, y), the more similar the pixel and target
spectrum.

Affinity is inversely proportional to distance in the feature space in artificial immune
systems (De Castro and Timmis 2002a). RSUAIN uses a fuzzy affinity concept based
on a fuzzy approach, f (x, y), defined by equation (3) so that the affinity between
antigens and antibodies or memory cells is in the range [0, 1]:

f (x, y) = exp
(
−α(x, y)

2σ 2
i

)
(3)
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5466 Y. Zhong et al.

where σ i is the scale or radius of influence in the feature space, which takes the
experimental value of 1 in real applications.

According to equations (2) and (3), α(x, y) ∈ [0, π/2], and f (x, y) ∈ [0.485, 1] with
σ = 1.

3.3 Iteration using RSUAIN

Once initialization and initial classification are complete, the next step is the iteration
of the algorithm. For each iteration, the algorithm performs the following steps to
evolve each antigen gj, j = 1, . . . , NG, (gj ∈ G), in the remote sensing image, where
NG represents the number of image pixels.

The RSUAIN algorithm aims at building and evolving a memory matrix that rec-
ognizes and represents the remote sensing image. The evolution of memory matrix
Mc (gj.c ≡ c) is accomplished as follows.

3.3.1 Evolving the algorithm by recognizing the antigen gj.

1. Calculate the affinity vector, fj. Determine the vector fj that contains the affinity
of gj to all the NB antibodies, where NB is the number of the antibody set B.

2. Select. Select the n highest affinity antibodies from B to compose a new anti-
body set of high affinity antibodies in relation to gj, where n is the number of
the cloned antibodies in B.

3. Clone. The n antibodies, selected independently and proportional to their anti-
genic affinities, generate a clone set CE: unlike in UAIC, the number of clones
for each antibody is no longer a free parameter, but instead is a fixed number
2n + 1 to avoid the influence of variations in the number of clones (Campelo
et al. 2006). The number of clones generated for all these n selected antibodies
is given by

NE =
n∑

i=1

(2n+ 1) (4)

where NE is the total number of clones generated for g.
4. Adaptive mutation. Submit the clones set CE to an affinity maturation pro-

cess inversely proportional to its antigenic affinity, generating a population C∗E
of matured clones: the higher the affinity, the smaller the mutation rate. The
mutation rate is adaptively determined without user-definition as follows:

pm = 1− ( f (gj, bi)/2) (5)

For each antibody bi in the antibody population of the tth generation,
create a mutated antibody b∗i through non-uniform mutations as follows: if
bi = {v1, . . . , vk, . . . , vNb} is a mutation and the element vk is selected with
the mutation rate pm for this mutation, the result is a mutated antibody
b∗i = {v1, . . . , v′k, . . . , vNb} using the following equation (Zhao et al. 2007):

v′k =
{

vk +�(t, U − vk) if a random ξ is 0,
vk −�(t, vk − L) if a random ξ is 1

(6)
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RSUAIN for remote sensing image classification 5467

where ξ is a random number and L and U are the lower and upper bounds of
the variable vk, respectively. The function �(t,u) returns a value in the range [0,
u] such that �(t,u) approaches to zero as m increases. This property allows this
operator to search the space uniformly at early stages (when t is small), and
very locally at later stages. The function �(t,u) is defined as

�(t, u) = u{1− r[1−(t/T)]λ} (7)

where t is the iteration number, T is the maximal iteration number, r is
a random value within the range [0,1], λ is a parameter to determine the
nonconforming degree, for which the experiential value is in the range of [3, 5].

5. Recalculate. Re-determine the affinity f ∗j of the matured clones C∗E in relation
to antigen gj.

6. Reselect. From C∗E, reselect ζ% of the antibodies with higher affinity and put
them into a candidate memory matrix Mm in the memory cell set M. This step
is optional since the next step has the function of selection by the death of
candidate memory cells.

7. Death. Remove the candidate memory cells in Mm whose affinities satisfy
the inequality f (bk, gj) < σd, where bk represents the selected antibody and σd

denotes the death rate which controls the affinity between the candidate mem-
ory cells and antigen. Only these candidate memory cells with the high affinity
may go to the next evolving step.

8. Internal affinity calculation. Determine the affinity f (bi, bl) between each two
candidate memory cells, bi and bl in Mm using equation (3).

9. Suppression. Remove those candidate memory cells f (bi, bl) > σs to reduce the
size of the Mm matrix and maintain the diversity of the memory cell pool.
σs represents the suppression rate. Then, output the resultant clonal memory
matrix M∗m. The class attribute of all the memory cells in M∗m is equal to the
class attribute of gj, M∗m.c = gj.c ≡ c.

10. Concatenate the total memory cell matrix with the resultant clonal memory
M∗m for gj: M← [M; M∗m]. These candidate memory cells become the memory
cells in the next step.

11. Internal re-calculation and re-suppression. Repeat step (8) and step (9) to M to
reduce the size of Mc, which has the same class attribute as gj.

Once step (11) has been accomplished, the recognition of this antigen has been
completed. The next antigen in the remote sensing image is selected and the process
proceeds from step (1) to (11) until the system has been presented with all antigens in
the image, that is, all pixels in the image have been evolved.

3.3.2 Updating the memory matrix M. After step 3.3.1, the algorithm may obtain
the memory matrix M of all classes. To maintain the size of the memory cell pool, the
M is suppressed by the following steps:

1. Internal calculation in M. Determine the affinity f (mi, ml) between two mem-
ory cells in M using equation (3).

2. Network suppression. Remove those memory cells f (mi, ml) > σs to reduce the
size of M by considering the influence of the classes because the memory cell
M has the class attribute, M = {M1 ∪M2 ∪ · · · ∪Mnc}.
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5468 Y. Zhong et al.

3.3.3 Classification of G using the new memory cell matrix M. By step 3.3.2, a new
memory cell matrix M has been obtained. The classification of G is performed accord-
ing to step 3.2, in which each antigen is determined to the same class of the memory
cell with the maximal affinity to g.

3.3.4 Update the antibody population. The d new antibodies are produced by a ran-
dom process from the G to replace the old antibodies. These old antibodies are selected
according to their affinities, and RSUAIN often selects the d old antibodies with lower
affinity. This step may increase the diversity of the antibody population, B. To reduce
the parameters, d can be obtained by the following equation:

d = NB × ζ% (8)

Once the memory matrix and the memory cell sets M have been suppressed, this
iteration is complete.

3.4 Stopping condition

When the number of iterations reaches the user-defined number or the change of
memory cells between two consecutive iterations is less than a change threshold, the
execution of the algorithm is terminated. Otherwise, return to step 3.3 until the stop
criteria are satisfied.

Finally, RSUAIN outputs the result of the classification of the remote sensing
image.

3.5 Comparision with earlier unsupervised artificial immune classifier

In previous work, an unsupervised artificial immune classifier (UAIC) has been pro-
posed and been applied for the classification of remote sensing imagery (Zhong et al.
2006). Unlike RSUAIN, UAIC is characterized mainly by immunological properties,
such as clonal selection theory and immune memory, and does not utilize immune
network theory (table 1). Compared with the concept of antibodies in aiNet, UAIC
proposes the AB (antibody) model to describe the antibody population in immune
systems that contain many antibodies of the class and memory cells, with every AB
model being able to recognize all antigens in its scale/radius of influence. In addi-
tion to the updating of the memory cell population, UAIC uses the distance threshold
scalar (DTS) to update the memory cells and control the number of memory cells in
the population, but RSUAIN defines two parameters, death rate σ d and suppression
rate σ s, to update the memory cell matrix, and to specify which network cells are con-
nected to each other describing the general network structure (see also section 3). In
RSUAIN, each class has an inner network connection, and the affinity of these mem-
ory cells is less than the suppression rate σ s to maintain the diversity of the memory
cell population. The diversity can let RSUAIN approximate any function with arbi-
trary accuracy by a universal functional approximator to improve the classification
accuracy.
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RSUAIN for remote sensing image classification 5469

Table 1. Comparison between an unsupervised artificial immune classifier (UAIC) and a remote
sensing unsupervised artificial immune network (RSUAIN).

Aspects UAIC (Zhong et al. 2006) RSUAIN

Principle Clonal selection algorithm,
immune memory, etc.

Immune networks

Model Antibody (AB) model aiNet and memory matrix
Affinity Spectral angle mapping

algorithm
Spectral angle mapping

algorithm
Network None Memory cell matrix
Candidate memory cell Antibody with the highest

affintiy
Antibodies with affinities larger

than death rate σ d
Controlling parameters Distance threshold (DT) and

distance threshold scalar
(DTS)

Death rate σ d and suppression
rate σ s

Mutation operator Gaussian mutation Non-uniform mutation

4. Experiments and analysis

The proposed RSUAIN and traditional unsupervised algorithms were implemented
and tested on different types of remote sensing images. Three experiments were
conducted to test the performance of classification. Comparisons were also carried
out between RSUAIN and k-means, ISODATA, fuzzy k-means, and UAIC in all
experiments.

4.1 Experiment 1: Flightline C1

This experiment was conducted using a dataset designated Flightline C1 (FLC1),
which consists of 12-band multispectral data taken over Tippecanoe County, IN, by
the Multispectral Airborne Scanner M7 in June 1966 (Tadjudin and Landgrebe 2000).
For convenient comparison with the unsupervised algorithms, we used part of the
dataset (190 × 110 pixels) with a spectral range from 0.40 to 1.00 µm (bands 1–12).
Figure 2(a) shows the FCL1 image. The survey area is an agricultural district, and the
primary objective of the survey was to achieve land cover classification. The observed
image was expected to fall into four classes: soy, wheat, red clover and oats. The list of
classes and the number of labelled samples for each class are given in table 2. The field
map, based on ground reference data, is shown in figure 2 (b).

The primary parameters specified by the user for the classification are the number
of classes nc, the maximum iterations T , antibody population size NB, death rate σ d,
suppression rate σ s, the number of selected antibodies n, and the reselect rate ζ%.
Here, nc is equal to four because the image was expected to fall into four classes.
The values of parameters were set by experience as: T = 10, NB = 100, n = 10,
ζ% = 10%. These values of σ d and σ s were selected from a sensitivity analysis (see
section 5), σ d = 0.96, σ s = 0.92. According to equation (8), d = NB×ζ% = 100×10%
= 10. For convenient comparison between RSUAIN and the traditional unsupervised
algorithms, the change threshold and the maximum iteration as stop conditions were
kept at the same values, namely 3% and 10. The parameters of ISODATA were set
as follows: number of initial classes = 4, minimum number of pixels in class = 1,
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(a) (b)

(c) (d)

(e)

(g)

( f )

Figure 2. Unsupervised classification images for Flight C1 image. (a) Flightline C1 Image
as RGB (bands 9, 7, 4), (b) ground reference data of FLC1, (c) k-means, (d) Iterative
Self-organizing Data Anaysis Techniques Algorithm (ISODATA), (e) fuzzy k-means, (f ) unsu-
pervised artificial immune classifier (UAIC), (g) remote sensing unsupervised artificial immune
network (RSUAIN).

maximum class standard deviation = 1.00, minimum class distance = 5.00, maximum
merge pairs = 2. In addition, the parameters of fuzzy k-means were set as follows:
weighting exponent m = 2, which is the optimal range of m within [1.5, 2.5] in the
practical applications (Pal and Bezdek 1995). All the available samples were used as
the evaluating dataset.
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RSUAIN for remote sensing image classification 5471

Table 2. Classes and number of labelled samples for Experiment 1.

Class name Number of labelled samples

Soy 2502
Wheat 1989
Red clover 5113
Oats 1065
Total number of samples 10 669

Figures 2(c)–(g) illustrate the classification results using k-means, ISODATA, fuzzy
k-means, UAIC and RSUAIN. The visual comparison of the five unsupervised clas-
sifications in figure 2 shows varying degrees of accuracy in pixel assignment. The five
classifiers have similar classification results for the soy class. For the wheat and oats
classes, k-means, ISODATA, fuzzy k-means, and UAIC have similar results. RSUAIN
and UAIC appear to have the better results for the red clover than other classifiers.
Compared with UAIC, RSUAIN is more accurate for the wheat class than UAIC and
other traditional classifiers since some wheat pixels are misclassified as the soy class at
the bottom left of the classification image obtained by the other four algorithms. In
summary, RSUAIN gives higher accuracy for all four classes.

After executing RSUAIN, the number of memory cells and the internal affinity
matrix of memory cells in the output constructed network can be obtained, as shown
in tables 3 and 4, respectively. Figure 3 shows the spectral curves of seven memory
cells. It should be noted that the number of memory cells in each class is highly cor-
related to the parameters of death rate σ d and suppression rate σ s, where σ d controls
the number of candidate memory cells and indirectly the number of final memory cells
(see also step 7 in section 3.3.1), while σ s controls directly the number of memory cells

Table 3. The number of memory cells in each class for Experiment 1.

Class name Number of memory cells

Soy 1
Wheat 2
Red clover 2
Oats 2
Total 7

Table 4. The internal affinity matrix of memory cells in the output constructed network.

Matrix Soy Wheat1 Wheat2 Red clover1 Red clover2 Oats1 Oats2

Soy – 0.918 0.936 0.849 0.915 0.919 0.961
Wheat1 – – 0.920 0.789 0.851 0.870 0.887
Wheat2 – – – 0.807 0.863 0.874 0.915
Red clover1 – – – – 0.920 0.889 0.872
Red clover2 – – – – – 0.933 0.936
Oats1 – – – – – – 0.920
Oats2 – – – – – – –

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 1
9:

10
 0

7 
Fe

br
ua

ry
 2

01
5 



5472 Y. Zhong et al.

Figure 3. The spectral curves of all memory cells in Experiment 1.

(see also step 9 in section 3.3.1 and step 2 in section 3.3.2). The sensitivity analysis of
σ d and σ s will be described in detail in section 5.

For a more detailed verification of the results, the ground reference data (table 2)
were compared with the classified images and the accuracy of each classifier was
quantitatively assessed using four statistics: producer’s accuracy, user’s accuracy, over-
all accuracy (OA), and Kappa coefficient based on the confusion matrix (Campbell
2000). To evaluate the statistical reliability of the classification results, statistical tests
of significance need to be performed. The classifier was run on the 10 testing sets
of each dataset to produce the corresponding classification accuracy. The 10 classifi-
cation accuracies were averaged to yield an overall classification performance of the
proposed algorithm. Due to the fact that RSUAIN is evolutionary and the results
obtained are unlikely to be similar twice, i.e. RSUAIN is non-deterministic, the exper-
iment described above was performed 10 times by the 10×10-fold cross validation
technique. The results obtained were again averaged.

Table 5 lists the results of the comparisons between the ground reference data and
the classified images obtained by five unsupervised classifiers: k-means, ISODATA,
fuzzy k-means, UAIC and RSUAIN. From table 5, it is apparent that the RSUAIN
classifier produces better classification results than the other classifiers. The details are
as follows: the five classifiers have similar results for the soy class. RSUAIN achieves
better classification results for the wheat and red clover classes than the three tradi-
tional classifiers and UAIC, while these classifiers may slightly exceed RSUAIN in the
oats class. As a whole, RSUAIN exhibits the best overall classification accuracy of
95.3% with a gain of 13.7%, 12.1%, 13.0% and 3.6% over the k-means, ISODATA,
fuzzy k-means, and UAIC algorithms, respectively. RSUAIN improves the Kappa
coefficient from 0.74 to 0.93, an improvement of 0.19. This is due to the conventional
unsupervised classifiers often becoming stuck at suboptimal solutions based on the ini-
tial configuration of their systems, and they have low precision. RSUAIN and UAIC
are inspired by immune systems, and are also data-driven, self-adaptive methods that
can adjust themselves to the data without any explicit specification of functional or
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RSUAIN for remote sensing image classification 5473

Table 5. Comparison of classifier performance in Experiment 1.

Methods Classes k-means ISODATA Fuzzy k-means UAIC RSUAIN

Producer’s Soy 98.7 98.5 98.8 99.4 98.6
accuracy (%) Wheat 74.0 75.6 82.8 84.2 99.9

Red clover 73.1 76.2 70.9 89.7 94.4
Oats 96.5 95.1 97.3 97.1 83.9

User’s accuracy Soy 82.3 83.2 87.3 88.7 99.7
(%) Wheat 99.7 99.5 99.5 99.8 99.9

Red clover 99.4 99.0 99.6 99.4 96.5
Oats 42.3 44.90 40.7 65.7 74.0

Overall accuracy (%) 81.6 83.2 82.3 91.7 95.3

Kappa 0.74 0.76 0.75 0.88 0.93

ISODATA, Iterative Self-organizing Data Anaysis Techniques Algorithm; UAIC, unsupervised
artificial immune classifier; RSUAIN, remote sensing unsupervised artificial immune network.

distributional form for the underlying model. Compared with UAIC, RSUAIN con-
trols the number of memory cells in each of the classes by the parameters of death
rate and suppression rate, where death rate controls the number of candidate memory
cells to improve the affinity of memory cells, while suppression rate controls directly
the number of memory cells. RSUAIN can generate optimal centroids of clusters by
the constructed network using the above controlled parameters. Based on the above,
we can conclude that RSUAIN has a better performance than other classification
methods in this study.

4.2 Experiment 2: Wuhan TM

This experiment was conducted using a Landsat Thematic Mapper (TM) image
dataset with 30 m pixels. The image (400 × 400 pixels) shown in figure 4(a) was
acquired of Wuhan city, Hubei, China, on 26 October 1998 with bands 1 (0.45–
0.52 µm), 2 (0.52–0.60 µm), 3 (0.62–0.69 µm), 4 (0.76–0.96 µm), 5 (1.55–1.75 µm)
and 7 (2.08–3.35 µm) being employed (Zhong et al. 2006). The survey area is part of
the city, and the primary objective of the survey was to discriminate four classes: water
(including the famous Yangtse River), vegetation, bare land/road (including paved
and unpaved roads) and urban areas. The list of classes and the number of labelled
samples for each class are given in table 6. The ground reference data used to evaluate
the classification accuracy are shown in figure 4(b). The ground reference data include
that of Zhong et al. (2006) supplemented by additional field mapping to increase the
statistical reliability of the classification results.

Table 6. List of classes and number of labelled samples in each class for Experiment 2.

Class name Number of labelled samples

Water 4025
Vegetation 5830
Bare land/Road 2763
Urban area 2512
Total number of samples 15 130
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5474 Y. Zhong et al.

(a) (b)

(c) (d)

(e)

(g)

( f )

Figure 4. The classification images for Wuhan Thematic Mapper (TM) image in Experiment 2.
(a) Wuhan TM Image as RGB (bands 4, 3, 2), (b) ground reference data, (c) k-means, (d)
Iterative Self-organizing Data Anaysis Techniques Algorithm (ISODATA), (e) fuzzy k-means,
(f ) unsupervised artificial immune classifier (UAIC), (g) remote sensing unsupervised artificial
immune network (RSUAIN).
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RSUAIN for remote sensing image classification 5475

Table 7. Comparison of classifier performance in Experiment 2.

Methods Classes k-means ISODATA
Fuzzy

k-means UAIC RSUAIN

Producer’s Water 89.4 92.2 95.5 96.9 97.6
accuracy (%) Vegetation 67.0 67.2 67.5 71.7 76.4

Bare land/Road 65.4 61.4 64.2 75.4 78.9
Urban area 71.7 83.5 85.0 94.4 91.5

User’s Water 97.0 97.0 97.1 98.1 99.5
accuracy (%) Vegetation 83.3 96.3 96.0 97.3 99.1

Bare land/Road 57.7 56.4 58.7 69.5 71.7
Urban area 51.1 51.3 54.2 63.5 64.5

Overall accuracy (%) 73.6 75.9 77.6 83.2 85.2

Kappa 0.64 0.68 0.70 0.77 0.80

Note: ISODATA, Iterative Self-organizing Data Anaysis Techniques Algorithm; UAIC, unsu-
pervised artificial immune classifier; RSUAIN, remote sensing unsupervised artificial immune
network.

The values of the classification parameters were set as: nc = 4, T = 10, NB = 100,
n = 10, ζ% = 10%, σ d = 0.98, σ s = 0.92. According to equation (8), d = NB×ζ% =
100×10% = 10. The parameters of the other traditional algorithms are the same as in
Experiment 1.

Figures 4(c)–(g) illustrate the classification results using k-means, ISODATA, fuzzy
k-means, UAIC and RSUAIN algorithms, respectively. The classification accuracies
for the classifiers, calculated overall accuracy and Kappa coefficient, are given in
table 7.

The visual comparisons of the five cluster classifications in figure 4 suggest varying
degrees of accuracy of classification, similar to those in Zhong et al. (2006). The five
classifiers have similar classification results for the water class. k-means and ISODATA
create similar classification maps, with poor differentiation between urban areas and
bare land/roads. In contrast, fuzzy k-means distinguishes well between urban areas
and bare land/roads, but has the lowest vegetation classification accuracy with many
vegetation pixels misclassified as the urban area class. By contrast, RSUAIN and
UAIC appear to achieve better accuracy in the vegetation class than the other clas-
sifiers, and also perform satisfactorily in the urban area and bare land/road classes
based on a visual comparison. As a result, RSUAIN and UAIC appear to obtain bet-
ter results than other traditional classifiers. This qualitative finding is supported by
the quantitative analysis (table 7). The details are as follows: RSUAIN has the highest
overall classification accuracy of 85.2% compared to 73.6% for k-means, and 83.2% for
UAIC, an improvement of 11.6% and 2%, respectively. The Kappa coefficient increases
from 0.64 for k-means to 0.80 for RSUAIN, an improvement of 0.16. The slight dif-
ference in classification results compared to those of Zhong et al. (2006) is due to the
greater number of test samples added by field collection in the method described in
this article. Based on the above, RSUAIN outperformed the other four techniques in
this study.

4.3 Experiment 3: Indian Pine AVIRIS

Experiment 3 was performed using a portion of an Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) dataset taken over Northwest India’s Indian Pine test in June
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5476 Y. Zhong et al.

Table 8. List of classes and number of labelled samples in each class for Experiment 3.

Class name Number of labelled samples

Corn-no-till 1008
Grass 747
Soybeans-no-till 737
Soybeans-minimum-till 1947
Total number of samples 4439

1992 (Tadjudin and Landgrebe 2000). The scene contains four known information
classes: Corn-no-till, Grass, Soybeans-no-till, Soybeans-minimum-till (table 8). By
visual inspection of the image, the list of these ground cover types is assumed to be
exhaustive. A total of 20 channels from the water absorption and noisy bands (104–
108, 150–163, 220) were removed from the original 220 spectral channels, leaving 200
spectral features for the experiments. The original image data and the ground reference
map are shown in figures 5(a) and (b).

(a) (b)

(c) (d)

Figure 5. The classification images for Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) image in Experiment 3. (a) AVIRIS image, (b) ground reference data, (c) k-means, (d)
Iterative Self-organizing Data Anaysis Techniques Algorithm (ISODATA), (e) fuzzy k-means,
(f ) unsupervised artificial immune classifier (UAIC), (g) remote sensing unsupervised artificial
immune network (RSUAIN).

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 1
9:

10
 0

7 
Fe

br
ua

ry
 2

01
5 
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(e)

(g)

( f )

Figure 5. (Continued).

To test the classifier performance, the optimal number of clusters was assumed as
the number of clusters using the Xie–Beni index, cluster validation method (Xie and
Beni 1991). The number of clusters was set to five. The values of parameters were set
as: nc = 5, T = 20, NB = 100, n = 10, ζ% = 10%, σ d = 0.98, σ s = 0.92. According to
equation (8), d = NB.

Figures 5(c)–(g) illustrate the classification results using k-means, ISODATA, fuzzy
k-means, UAIC and RSUAIN algorithms, respectively. The classification accuracies
for the classifiers, calculated using overall accuracy and Kappa coefficient, are given
in table 9. As shown in figure 5 and table 9, k-means and fuzzy k-means have similar
classification results, and there is obvious misclassification between the Soybeans-no-
till class and Soybeans-minimum-till class becasuse of their similar spectral responses.
The ISODATA has a lower number of misclassified pixels, with some Soybeans-
minimum-till pixels being classified correctly in the centre of the classification image.
The UAIC has the best classification results for the Soybeans-minimum-till class
(88.2%), while the Soybeans-no-till class is not classified correctly. Compared with
other classifiers, RSUAIN does not have the best classification accuracy for each class,
but it has the best visual and overall accuracy (73.8%), and also performs satisfac-
torily for the Soybeans-no-till and Soybeans-minimum-till classes. It is worth noting
that RSUAIN and UAIC have better classification results than traditional classifiers,
but UAIC has the worst result for the Soybeans-no-till class with some Soybeans-
no-till pixels misclassified to the Soybeans-minimum-till class. These results may be a
consequence of the fact that UAIC has many memory cells of Soybeans-minimum-till
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Table 9. Comparison of classifier performance in Experiment 3.

Methods Classes k-means ISODATA
Fuzzy

k-means UAIC RSUAIN

Producer’s Corn-no-till 46.7 51.7 51.2 47.4 43.6
accuracy (%) Grass 98.9 98.1 99.2 95.0 99.9

Soybeans-no-till 53.9 50.3 55.2 23.4 72.1
Soybeans-minimum-till 66.0 70.1 60.8 88.2 81.2

User’s Corn-no-till 80.9 75.2 75.8 80.1 83.1
accuracy (%) Grass 93.0 92.3 92.0 94.0 82.4

Soybeans-no-till 34.4 34.0 33.4 39.0 63.3
Soybeans-minimum-till 66.9 68.5 67.5 65.2 72.4

Overall accuracy (%) 63.4 65.7 62.1 68.6 73.8

Kappa 0.47 0.50 0.46 0.52 0.62

ISODATA, Iterative Self-organizing Data Anaysis Techniques Algorithm; UAIC, unsupervised
artificial immune classifier; RSUAIN, remote sensing unsupervised artificial immune network.

classes, and many Soybeans-no-till pixels are misclassified because of the similarity of
the Soybeans-no-till and Soybeans-minimum-till classes. RSUAIN uses the death date
and suppression rate to update the memory cell population, while keeping the good
recognition rate for the antigen (unclassified pixel). As a result, RSUAIN has better
results than other classifiers in this experiment.

5. Sensitivity analysis of RSUAIN

RSUAIN has two important user-defined parameters that significantly influence
the classification: (1) the number of final memory cells; and (2) the computational
complexity. These parameters are as follows.

1. Death rate σ d: controls the affinity levels and the number of candidate memory
cells, with their affinity being greater than σ d, and indirectly the number of final
memory cells (see also step 7 in section 3.3.1).

2. Suppression rate σ s: controls directly the number of memory cells and main-
tains the diversity of the memory cell pool (see also step 9 in section 3.3.1 and
step 2 in section 3.3.2).

In order to analyse the effects of setting these parameters when running RSUAIN,
the Landsat TM image, shown in figure 4(a), was classified using different values for
the parameters. Each experiment was performed 10 times and the results obtained
were averaged.

5.1 Sensitivity in relation to parameter σd

Death rate σ d controls the affinity between candidate memory cells and the antigen to
determine the quality of memory cells and indirectly the number of candidate memory
cells. Only if the affinity between one antibody and antigen is larger than σ d can the
antibody have a chance of becoming a candidate memory cell or a final memory cell.
In order to study the RSUAIN sensitivity in relation to death rate σ d, other parameters
were kept the same as in Experiment 1 with σ s = 0.92 but σ d assuming the following
values: σ d = {0.95, 0.96, 0.97, 0.98}. Figure 6 illustrates the sensitivity of RSUAIN
accuracy and number of memory cells on the parameter σ d.
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RSUAIN for remote sensing image classification 5479

Figure 6. Sensitivity of remote sensing unsupervised artificial immune network (RSUAIN) in
relation to σ d.

As shown in figure 6, when the other parameters are fixed, the smaller the value
of σ d, the greater the number of memory cells. The overall accuracy increases when
the value of σ d is changed from 0.95 to 0.97 and it reaches a maximum, 86.6%, with
the overall accuracy decreasing as the value of σ d increases. The reason is as follows:
when σ d is small, more antibodies may become candidate memory cells because their
affinities satisfy the inequality f > σ d (see also step 7 in section 3.3.1). The increase
in the number of candidate memory cells improves the probability, so that the candi-
date memory cells become the final memory cells. That is, the value of σ d indirectly
influences the number of final memory cells. However, too many memory cells does
not improve the classification accuracy by decreasing the value of σ d; it may even
decrease the accuracy because the final memory cells do not correctly represent the
whole antigen population, as the error between these memory cells and the antigen
may be too large. In addition, too large a σ d may lead to too few candidate memory
cells, while those candidate memory cells obtained also cannot represent the original
antigen set. In real applications, the value of σ d is defined by the user according to
different requirements.

5.2 Sensitivity in relation to parameter σs

σ s controls the number of memory cells and the diversity of the memory cell pool. In
order to study the RSUAIN sensitivity in relation to the death rate σ s, other parame-
ters were kept the same as in Experiment 2, except for the death rate σ d = 0.96 and σ s

assumed the following values: σ s = {0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96} as seen in
figure 7.

As shown in figure 7, the number of memory cells increases from 4 to 48 when σ s

increases from 0.90 to 0.96. For the value σ s = 0.90, the number of memory cells is
equal to the number of classes, four. It is also interesting to observe that the num-
ber of memory cells increases quickly from 22 to 48, an increase of nearly 100%. Too
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5480 Y. Zhong et al.

Figure 7. Sensitivity of remote sensing unsupervised artificial immune network (RSUAIN) in
relation to σ s.

large a σ s leads to the reduction of the memory cell population’s diversity since the
population will become a mass with many memory cells, which can reduce the classi-
fication accuracy. For instance, when σ s is equal to 0.96, the accuracy is only 81.4%.
In contrast, a small value of σ s (i.e. 0.90) also has negative effects, in that each class
may only obtain one memory cell resulting in low classification accuracy (78.7% with
σ s = 0.90). Based on our experience and experiments, optimum values for σ s typically
range between 0.91 and 0.95.

6. Conclusions

This article describes an artificial immune approach for unsupervised classification
of remote sensing image data. The unsupervised classification approach, RSUAIN, is
developed for remote sensing image classification based on the paradigm of artificial
immune network models, i.e. artificial immune network (aiNet). RSUAIN overcomes
the disadvantages of aiNet, for example the need for many user-defined parameters,
and was successfully applied to the classification of remote sensing images. RSUAIN is
capable of performing data clustering by utilizing the advantages of aiNet, for instance
the nonlinear model and immune memory, to generate an immune memorial network
for classification. Two key user-defined parameters, death rate σ d and suppression rate
σ s, determine the above process. The article provides a sensitivity analysis of RSUAIN
in relation to the two parameters to allow users to improve the effectiveness of the
algorithm according to different real applications.

Three experiments were carried out to test the performance of RSUAIN using aerial
and satellite multispectral remote sensing images. Compared with three traditional
unsupervised classifiers, k-means, ISODATA and fuzzy k-means, RSUAIN showed
greater accuracy in the two case studies, for the experimental conditions chosen. In the
experiments, the average RSUAIN classification overall accuracy improved to 84.8%
compared to 72.9% using k-means, 74.9% using ISODATA, and 74.0% using fuzzy
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RSUAIN for remote sensing image classification 5481

k-means; and the average Kappa coefficient improved to 0.78 with RSUAIN com-
pared to 0.62 using k-means, 0.65 using ISODATA, and 0.64 using fuzzy k-means. The
improvement of overall accuracy and Kappa coefficient is 11.9% and 0.16, respectively.
RSUAIN also has better classification results than UAIC, which obtained higher
classification accuracy than three traditional classifiers. It is worth noting that the dif-
ference in accuracy between UAIC and RSUAIN is largest in Experiment 3 when the
spectral dimension of the remote sensing image is very high (i.e. 200). This evidences
that RSUAIN is capable of performing the task of remote sensing image classification
and has high classification precision. In future work we will integrate fuzzy theory for
improving the classification performance.
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