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Abstract—Due to its inherent complexity, remote sensing image
clustering is a challenging task. Recently, some spatial-based clus-
tering approaches have been proposed; however, one crucial factor
with regard to their clustering quality is that there is usually one
parameter that controls their spatial information weight, which is
difficult to determine. Meanwhile, the traditional optimization
methods of the objective functions for these clustering approaches
often cannot function well because they cannot simultaneously
possess both a local search capability and a global search capability.
Furthermore, these methods only use a single optimization method
rather than hybridizing and combining the existing algorithmic
structures. In this paper, an adaptive fuzzy clustering algorithm
with spatial information for remote sensing imagery (AFCM_S1) is
proposed, which defines a new objective function with an adaptive
spatial information weight by using the concept of entropy. In order
to further enhance the capability of the optimization, an adaptive
memetic fuzzy clustering algorithm with spatial information for
remote sensing imagery (AMASFC) is also proposed. In AMASFC,
the clustering problem is transformed into an optimization prob-
lem. A memetic algorithm is then utilized to optimize the proposed
objective function, combining the global search ability of a differen-
tial evolution algorithm with a local search method using Gaussian
local search (GLS). The optimal value of the specific parameter in
GLS, which determines the local search efficiency, can be obtained
by comparing the objective function increment for different values of
the parameter. The experimental results using three remote sensing
images show that the two proposed algorithms are effective when
compared with the traditional clustering algorithms.

Index Terms—Fuzzy clustering, memetic algorithm, remote
sensing, spatial information.

I. INTRODUCTION

C LUSTERING is one of the most important techniques in
remote sensing image processing. The aim of remote

sensing clustering is to partition a given image into groups such
that pixels in the samegroup are as similar to eachother aspossible,
while those assigned to different groups are dissimilar [1]–[3].
Among the clusteringmethods, fuzzy clustering is popular and has
been widely used in remote sensing image clustering [3]–[6]. The

fuzzy clustering approach can retain more information from the
original image than the crisp or hard clustering methods such as
K-means [7] and ISODATA[8],whichusually donot performwell
when the mixed pixel problem appears.

Fuzzy c-means (FCM) [9] is one of themost widely used fuzzy
clustering methods in remote sensing image clustering. In some
cases, the original FCM-based clustering algorithms do function
well, to a certain extent; however, due to the characteristics of
remote sensing imagery and the influence of external conditions,
there are still some problems in remote sensing image clustering.
For example, some isolated pixels may appear in the clustering
image due to the existence of noise, outliers, or mixed pixels.
This may be a result of not taking the spatial information in the
image into account. Ahmed et al. [10] proposed FCM_S, with
the aim of incorporating the spatial information by modifying
the objective function of FCM. However, FCM_S is time-
consuming because of the computation of the spatial neighbor-
hood term in each iteration step. Chen and Zhang [11] reduced
the computational complexity of FCM_S by introducing amean-
filtered image named FCM_S1. However, one common draw-
back of the above methods is that they both need a parameter
to control the trade-off between robustness to outliers and the
effectiveness of the detail preservation [12]. Moreover, this
parameter is often selected empirically, which is time-consuming
and unreliable. Second, the traditional clustering algorithms,
such as K-means and FCM, belong, in essence, to mountain-
climbing methods. That is, it is easy for them to get stuck in a
local optimum, especially when considering the complexity of
remote sensing processing [13]. Hence, global optimization
methods such as the genetic algorithm, differential evolution
algorithm, clonal selection algorithm [14], and particle swarm
optimization have been used to optimize the corresponding
objective functions [15]–[19]. Although these global optimization
methods can locate the promising solutions of the search space, it
is difficult for them to refine the solutions in the space. As a result,
the optimization performance is usually unsatisfactory if only one
optimizationmethod is utilized to optimize the objective function.

In this paper, to overcome the problems mentioned above, an
adaptive fuzzy clustering algorithm with spatial information for
remote sensing imagery, namely AFCM_S1, is proposed. In
AFCM_S1, a new objective function with an adaptive spatial
information weight is constructed. Inspired by the physical mean-
ing of entropy, an increased spatial constraint is assigned to pixels
with greater entropy, due to the fact that the pixels with greater
entropy are much more uncertain. In AFCM_S1, the adaptive
spatial informationweight is set intuitively as normalized entropy.
In addition, an adaptive memetic fuzzy clustering algorithm
with spatial information for remote sensing imagery, namely
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AMASFC, is also proposed, in which the clustering problem is
transformed into anoptimization problem.Amemetic algorithm is
introduced to optimize the proposed objective function. Memetic
algorithms, as first proposed by Moscato [20], can be seen as a
population-based search method that is coupled with one or more
refinement methods. Evolutionary algorithms perform well for
global searching because they are capable of quickly finding and
exploiting the promising regions of the search space, but their
capability of converging to a local optimum is limited. Local
search methods can quickly find the local optimum of a small
region of the search space, but they have poor global search
capability. As a result, hybrid algorithms have been proposed,
which can combine the excellent global exploration character-
istics of an evolution algorithm with the efficient refinement
capabilities of a local search algorithm. These hybrid algorithms
are known as memetic algorithms [21], [22]. Memetic algorithms
have been successfully applied to many problems, including
combinatorial optimization [23], multi-objective optimization
[24], gene features [25], and feature selection [26], [27]. They
have also been used in some real-world applications in remote
sensing image processing, such as image segmentation [28],
feature selection [29], and sub-pixel mapping [30]. In this paper,
the global search in thememetic algorithm is set to be a differential
evolution algorithm [31] because of its powerful global search
capability, which has been proved inmany applications [32]–[34].
Gaussian local search (GLS) is used as the local search method.
The optimal value of parameter in GLS, which determines the
local search efficiency, can be obtained by comparing the Jm
increment for different values of .

The rest of the paper is organized as follows. Section II
introduces some related background, including fuzzy clustering
with spatial constraints (FCM_S), and the framework of the
memetic algorithm. Section III describes the proposed algorithm
in detail. The experimental results are shown in Section IV, and
Section V provides the conclusion.

II. THE FUZZY CLUSTERING ALGORITHM WITH

SPATIAL INFORMATION

A. The FCM Clustering Algorithm

The FCM clustering algorithm performs clustering by mini-
mizing the objective function (1)

< <

where is the gray-level value of the th pixel; is the total
number of pixels; is the number of clusters; is the value of
the th cluster center; and represents the fuzzymembership of
the th pixel, with respect to the th cluster center, which satisfies
(2). The parameter m is a fuzzy weighting exponent on each
fuzzy membership , and it controls the fuzziness of the
membership . When the parameter m approaches
1, the FCM algorithm tends to be a crisp clustering algorithm, the
same as K-means. When the parameter m approaches positive
infinity, the entire data tend to be classified into one class.

By minimizing the objective function (1) using the Lagrange
multiplier method, the update equations of membership and
cluster centers are as (3) and (4), respectively. The FCMcan be
implemented in the following steps:

1) Initialize the membership matrix by randomly
selecting values between 0 and 1. Then, the
constraint in (2) is conducted on the initial-
ized membership matrix .

2) Calculate the cluster centers by (3).
3) Calculate the membership matrix U by (4).
4) Repeat steps 2) and 3) until the difference between the

current membership matrix and the previous membership
matrix is under the specified threshold value, which is
0.0001 in this paper.

A major disadvantage of FCM is that its clustering quality is
sensitive to the initial value, and it is also heavily influenced
by noise.

B. FCM_S and Its Improved Variant (FCM_S1)

In a remote sensing clustering image, there are often some
isolated pixels, which can result for the following reasons:
1) there is noise, and/or outliers in the remote sensing image;
2) because of the low resolution of the remote sensing image,
some mixed pixels may exist; and 3) different objects may have
the same spectral characteristic, while similar objects may have
different spectral characteristics. Hence, in the above situation,
the standard FCM cannot function well because it does not apply
any spatial information in its objective function, which makes it
sensitive to noise or other isolated pixels. To overcome this
problem, clustering algorithms incorporating spatial information
have been proposed.

FCM_S, as introduced by Ahmed et al. [10], is a modification
of FCM that introduces a term that allows the labeling of a pixel
to be influenced by the labels in its neighborhood. The neigh-
borhood effect acts as a regularizer and biases the solution toward
homogeneous labeling. The objective function of FCM_S is
defined as follows:

where is the gray-level value of the th pixel; is the total
number of pixels; is the value of the th cluster center;
represents the fuzzy membership of the th pixel, with respect to
the th cluster center; and is its cardinality. represents the
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neighbor of and stands for the set of neighbors falling into a
window around pixel . The parameter is used to control the
effect of the neighbor term.

FCM_S is time-consuming because of the calculation of the
neighbor term at each iteration step. As a result, FCM_S1 [11]
was proposed as a variant of FCM_S. The objective function of
FCM_S1 is written as follows:

where is the mean of the neighboring pixels lying within a
window around . Unlike FCM_S, can be calculated in
advance, reducing the calculation time.

The two methods mentioned above (FCM_S and FCM_S1)
can function well in certain situations. However, the clustering
quality largely depends on the parameter , which controls the
trade-off between robustness to outliers and the effectiveness of
detail preservation, and parameter is often selected by trial and
error. In Section III, we formulate the proposed method of
adaptively determining the trade-off parameter by introducing
the concept of entropy.

C. The General Framework of the Memetic Algorithm

The traditional clustering algorithms, such as K-means and
FCM, belong, in essence, to mountain-climbing methods. That
is, it is easy for them to get stuck in a local optimum. Some global
optimization methods such as the genetic algorithm, differential
evolution algorithm, and clonal selection algorithm have
been used to optimize the corresponding objective functions.
Although these global optimization methods can locate the
promising solutions of the search space, it is difficult for them
to refine the solutions in the space. Hence, the optimization
performance is usually unsatisfactory if only one optimization
method is utilized to optimize the objective function. As the “no
free lunch” theorem shows, there is no universal optimizer which
performs well on all classes of problems. Hence, a memetic
algorithm is needed, which can be seen as a population-based
search method that is coupled with one or more local search
methods; the framework of which is summarized in Fig. 1 [23].

As can be seen from Fig. 1, the general framework of the
memetic algorithm is the same as a traditional evolution algo-
rithm such as the genetic algorithm or differential evolution
algorithm, except for the addition of a local search procedure
that refines some individuals of the population. The success of
the memetic algorithm is, therefore, largely dependent on the

selection of the local search method, which often incorporates
domain knowledge of the specific problem. For example, the
most commonly used local search methods in combinatorial
domains are hill climbing, simulated annealing, and tabu search.
In continuous domains, downhill, gradient, quasi-Newton, and
trust-region strategies are often used [35].

III. AN ADAPTIVE MEMETIC FUZZY CLUSTERING ALGORITHM

WITH SPATIAL INFORMATION FOR REMOTE SENSING IMAGERY

In this paper, to adaptively determine the spatial information
weight in the process of fuzzy clustering and to enhance the
capability of the traditional optimization methods, an adaptive
memetic fuzzy clustering algorithm with spatial information
for remote sensing imagery, namely AMASFC, is proposed.
AMASFC consists of two main processes: 1) the construction of
the objective function and 2) the optimization of the objective
function. In the process of the construction of the objective
function, a new objective function is proposed with an adaptive
spatial informationweight by introducing the concept of entropy.
In the process of the optimization of the objective function, a
memetic algorithm is utilized to optimize the proposed objective
function, combining a differential evolution algorithm with a
GLS method. The flowchart of the proposed algorithm
(AMASFC) is shown in Fig. 2. The two processes of AMASFC
are described in detail in the following sections.

A. Construction of the Objective Function and Its Traditional
Optimization Method

The objective function of the proposed algorithm is as follows:

As with the objective function of FCM (1), the objective
function (7) can also be minimized by updating (8) and (9)
through iteration. In the rest of the paper, we refer to the above
optimization method as AFCM_S1

< <

where is a vector representing the th pixel for a multispec-
tral remote sensing image, is the total number of pixels,

Fig. 1. General framework of the memetic algorithm.
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and is the number of clusters, and are the cen
troids of the clusters. The parameter m is a fuzzy weighting
exponent on each fuzzy membership and the function of
the parameter m is similar to FCM. The array is a
fuzzy membership matrix satisfying (10). represents the
mean of the pixels falling into a window around , which
can be calculated in advance. The parameter is used to
control the effect of the neighbor term determined by the
entropy of the th pixel. The formula for the entropy [36] is
as follows:

where is the entropy of the th pixel. As can be seen from
(11), the greater the entropy of the pixel, the more uncertain the
pixel is. On the other hand, for isolated pixels, their fuzzy
membership to each class is comparable to the FCM-based
clustering methods. That is, the labels of these pixels are
uncertain. Hence, our motivation for introducing entropy is
to put an increased spatial constraint onto the pixels with more
uncertainty.

In order to obtain the entropy of each pixel, the FCM
algorithm is first applied to the remote sensing image, and the
membership matrix can then be acquired. The entropy of each
pixel is then calculated by (11). Because the range of the
entropy is not equal to the range of , namely [0,1], it needs
to be mapped linearly to [0,1]. The linear mapping schedule in
our study is as follows:

where is the entropy of the th pixel. and are the
maximum and minimum entropies of all the pixels, respectively,
and is the trade-off parameter of the th pixel.

Fig. 3(a) is one-dimensional simulated data with a size of
pixels. After applying FCM to the data, the cluster centers

and are 86.71 and 171.00, respectively.Moreover, the trade-
off parameter matrix can be calculated as shown in Fig. 3(b). As
can be seen fromFig. 3(a), the pixelswith values of 255 and 10 are
verydifferent from the other pixels. InFig. 3(b), these pixelshavea

Fig. 2. Flowchart of the adaptive memetic fuzzy clustering algorithm with spatial information (AMASFC).
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much greater spatial information weight than the other pixels,
meaning that an increased spatial constraint is put on these pixels.

B. The Proposed Optimization Method of the Objective
Function (Memetic Algorithm)

Amemetic algorithm is used to optimize the objective function
(7) and the fuzzy clustering problem is transformed into an
optimization problem. An adaptive differential evolution algo-
rithm [37] jDE is used as the global search method, while GLS is
used to refine the solution. The whole optimization process can
be implemented according to the following steps:
Step 1) Initialization of the population. In jDE, considering the

adaptive mutation and cross-over in Step 3), the muta-
tion scale factor and the crossover constant need
to be encoded into the individual. We assume that there
are cluster centers and bands in the remote sensing
image (see Fig. 4). Hence, each individual contains
( ) dimensions. is the number of cluster
centers. is the number of bands of the image. The
number of parameters in DE is 2. The individual in the
population is initialized by randomly selecting pixels
from the whole image as the cluster centers.

Step 2) Calculation of the fitness of each individual, using the
objective function (7).

Step 3) Adaptive mutation and crossover. In DE, the mutation
operator amounts to creating a donor vector

for changing each
individual of the population. The mutation process can
be expressed as follows:

where are picked up ran-
domly from the population.

After the mutation operator, crossover is under-
taken between the donor vector and the target
vector , generating a trial vector

. The crossover operator
can be implemented as follows:

There are two main parameters and in DE. As
shown in Fig. 4, each individual not only encodes the
cluster centers but also the parameters and ,
enabling their update in the process of evolution. and

can be updated according to

<

where and are the updated values of the corre-
sponding individual.

Step 4) Recalculation of the fitness of the offspring, using the
objective function (7).

Step 5) Selection. The selection operator is used to decide if
the target vector or the trial vector is the
winner. The vector with the better fitness can then be
selected for the next generation. The target vector of
the next generation is generated by the selection opera-
tor, as follows:

where is the objective function and an individual
with a lower value of has the better fitness, assum-
ing that this is a minimization problem. is the
individual that is selected to the generation.

Step 6) Elitist strategy. In order to speed up the convergence of
the iteration and enhance the efficiency of the optimiza-
tion, an elitist strategy is applied, which preserves the
individual with the best fitness found so far.

Step 7) Local search. If the search stagnates for consecutive
generations, i.e., the candidate best individual does not
update for consecutive generations, then local search

Fig. 3. Example of the determination of parameter : (a) simulated data
( , ) and (b) corresponding trade-off parameter matrix of
the data in (a).

Fig. 4. Example of individual encoding.

Fig. 5. Update of the best individual in the process of local search.
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can be executed. The local searchmethod is described in
detail in Section III-C.

Step 8) Terminal condition. Repeat Steps 3)–7) until the termi-
nal condition is met. The terminal condition is to either
reach the maximum number of iterations or the begin-
ning of stagnation for the update of the best individual.

Step 9) After the optimization layer, the optimal cluster centers
can be acquired. However, the optimal cluster centers
cannot be used to cluster the original remote sensing
image directly because of the physical meaning of the
objective function (7). Before clustering, (9) is used to
generate the corresponding fuzzy membership matrix,
and each pixel should be assigned to the class with the
largest membership.

C. Local Search

Local search is an important part of the memetic algorithm.
The role of the local search is fundamental, and the selection of its
search rule and its balance with the global search scheme
determines the success of the memetic framework [35]. The
local search method used in this paper is as follows.

GLS: Suppose that is a
vector with dimensions that represents a cluster center. The
Gaussian mutation can be represented as

where and is a normal distribution
with a mean of and standard deviation .

The Gaussian mutation is performed on each dimension of the
vector because of the sparsity of the efficient solutions. For
example, for the individual in Fig. 4, it needs a six-times

Gaussian mutation and six-times evaluation to perform the local
search. As for the minimization problem, the individual with the
best fitness obtained by the global search can be updated as
follows (Fig. 5):

<

where , , and
are the old best individual, the trial individual, and the new best
individual, respectively.

Fig. 6 shows the process of GLS. Trial solutions are generated
by performing Gaussian mutation on the individual with the best
fitness. If thefitness of the trial solution is higher than the old one,
then the trial solution will replace the old one.

As can be seen from (18), the parameter is crucial to the GLS
and is discussed further in Section IV.

IV. EXPERIMENTAL RESULTS

A. Competing Methods and Parameter Settings

The proposed algorithm AMASFC is compared with several
other clustering algorithms: the FCM clustering algorithm,
FCM_S1 [11], AFCM_S1, and automatic fuzzy clustering using
an improved differential evolution algorithm (FCIDE) [16]. It
should be noted that the AFCM_S1 method only uses the
proposed adaptive spatial information weight instead of intro-
ducing a memetic algorithm, as in AMASFC. FCIDE involves
the application of DE to the automatic clustering of large
unlabeled datasets and aims to automatically determine the
optimal class number of the unlabeled dataset. It can give a
promising result with a modification of the traditional DE
chromosome representation scheme. However, in some cases,
FCIDE cannot determine the correct class number of the unla-
beled dataset. Hence, for the different remote sensing datasets of
FCIDE, the best clustering results with the correct class numbers
are reported, instead of the mean and standard deviation of the
clustering accuracy.

Fig. 7 lists the parameter settings of the experiments. For the
FLC image, the Wuhan TM image, and the Salinas Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) image, the size

Fig. 6. Process of GLS.

Fig. 7. Parameter settings.
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of the population in FCIDE and AMASFC is [38], where
is the dimension of the data. The number of maximum

generations is 100. The standard deviation, namely the parameter
in GLS, is 0.1, 1, and 1 in experiments 1, 2, and 3, respectively.

The exponent weighting parameter m is 2 in all the experiments.

B. Experiment 1—FLC Multispectral Image

In experiment 1, a Flightline C1 image of Tippecanoe County,
Indiana, US, is used, whichwas acquired from theM7 scanner, at
a resolution of and a size of
pixels, in June 1966. Twelve bands are contained in this image.
This image contains four classes: corn, oat, red clover, andwheat.
The original image and the ground truth image are shown in
Fig. 8(a)–(b).

Fig. 8(c)–(g) illustrates the clustering results of the FLC image
using FCM, FCM_S1, FCIDE, AFCM_S1, and AMASFC,
respectively. It should be noted that Fig. 8(g) shows the best
clustering result of AMASFC, and the overall accuracy (OA) of
which is 92.17%. Visually, the clustering results of FCM_S1,

AFCM_S1, and AMASFC are different from FCM and FCIDE
due to the application of the spatial information. Although the red
clover class is largely misclassified into the corn class for all five
results, the clustering result of the red clover class for AMASFC
is better because of the reduced misclassification in the middle-
lower part of Fig. 8(g) when compared with the other results. The
result of FCM_S1 looks smoother, compared with AFCM_S1
andAMASFC, especially in some parts of the corn and red clover
classes, and the reason for this is that the trade-off parameter can
be tuned manually for FCM_S1.

To compare the above algorithms quantitatively, the OA and
kappa coefficient [39], [40] for the image are listed in Table I. It
should be noted that in order to compare AMASFC with the
competing methods more fairly and to demonstrate the stability
of AMASFC, the experiments are repeated 10 times. The mean
and the standard deviation of the 10 runs are listed in Table I. As
can be seen from Table I, AMASFC obtains the best OA,
89.62%, with gains of 2.53%, 0.32%, 1.64%, and 1.10% over
FCM, FCM_S1, FCIDE, and AFCM_S1, respectively. It can be

Fig. 8. FLC image and the clustering results: (a) FLC image, (b) ground truth, (c) FCM, (d) FCM_S1( ), (e) FCIDE, (f) AFCM_S1, and (g) AMASFC.
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Fig. 9. Wuhan TM image and the clustering results: (a) Wuhan TM image, (b) ground truth, (c) FCM, (d) FCM_S1( ), (e) FCIDE, (f) AFCM_S1, and
(g) AMASFC.

TABLE I
COMPARISON OF THE RESULTS FOR THE FLC IMAGE

PA, producer’s accuracy; UA, user’s accuracy.
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seen that the producer’s accuracy is markedly different from the
user’s accuracy for the red clover class of the five results. This is
because, formany pixels, the red clover class ismisclassified into
the corn class. Overall, the quantitative comparison of the five
algorithms is consistent with the above qualitative finding.

AMASFC achieves the best performance both visually and
quantitatively. The reason for this may be that there is no spatial
information in the objective function of FCM and FCIDE, which
could result in some isolated pixels. For FCM_S1 and
AFCM_S1, they can easily get stuck in a locally optimal solu-
tion, due to the lack of a global search capability and their
sensitivity to the initial values. Moreover, by the optimization of
the memetic algorithm, the clustering result of AFCM_S1 is
dramatically enhanced. Hence, for AMASFC, not only is the
spatial information weight determined adaptively but also the
clustering result is the best among all the clustering algorithms
mentioned above due to the optimization of the memetic algo-
rithm. Although the clustering result of AMASFC is not over-
whelmingly impressive when compared with FCM_S1, the
spatial information weight of FCM_S1 needs to be determined
by trial and error, whereas it is determined adaptively for
AMASFC. Furthermore, because the FLC image is simple, it
is inclined to be oversmoothed. In the next part, more compli-
cated images are tested with the proposed methods.

C. Experiment 2—Wuhan TM Image

In order to further test the validity of the proposed algorithm,
another image is used, which is a 30-m resolution multispectral
Landsat TM image of Wuhan City, China, with a size of

pixels and six bands. This region of the image was
expected to contain five classes: river, vegetation, lake, bare soil,
and building. The original Wuhan TM image and the ground
truth image are shown in Fig. 9(a)–(b).

Fig. 9(c)–(g) illustrates the clustering results for the Wuhan
TM image using FCM, FCM_S1, FCIDE, AFCM_S1, and
AMASFC, respectively. Again, it should be noted that Fig. 9(g)
shows the best clustering result of AMASFC, and the OA of

which is 88.94%. First, there aremore isolated pixels in the result
of FCM and FCIDE than for the three other classifiers, due to it
not taking the spatial information into account. Second, as can
be seen from Fig. 9, because of the simple characteristics of the
river class and lake class, the five classifiers all achieve similar
clustering results. For FCM, FCM_S1, and AFCM_S1, the
building class is largely misclassified into the vegetation class,
especially in the left-middle part of the image, compared with
AMASFC, which gives better visual results. On the other hand,
for FCIDE, the vegetation class is largely misclassified into the
building class, when compared with AMASFC. Lastly, the bare
soil class is largely misclassified into other classes such as the
river class (in the top part of the image) and the building class (in
the left-middle of the image). A possible reason for this is that the
shape of the bare soil class in the ground truth image is linear,
which could easily be smoothed by neighboring pixels. On the
whole, AMASFC achieves the best visual accuracy.

To compare the above algorithms quantitatively, the OA and
kappa coefficient for the image are listed in Table II. It should be
noted that in order to compare AMASFC with the competing
methodsmore fairlyand todemonstrate thestabilityofAMASFC,
the experiments are repeated 10 times. Themean and the standard
deviation of the 10 runs are listed in Table II. AMASFC obtains
the best OA, 86.55%, with gains of 4.89%, 0.86%, 4.80%,
and 2.20% over FCM, FCM_S1, FCIDE, and AFCM_S1,
respectively. The quantitative comparison of the five algorithms
is consistent with the above qualitative finding: based on the
above analysis, AMASFC outperforms the four other classifiers.

D. Experiment 3—Salinas AVIRIS Image

In order to test the performance of the proposed algorithms
when clustering a remote sensing image with a large number of
classes, another remote sensing image dataset is used, which was
acquired by the 224-band AVIRIS sensor over the Salinas
Valley, CA, USA [41]. The size of the image we use is 245
lines by 217 samples. A total of 20 water absorption bands

TABLE II
COMPARISON OF THE RESULTS FOR THE WUHAN TM IMAGE

PA, producer’s accuracy; UA, user’s accuracy.
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(108–112, 154–167, 224) were removed. The image contains
eight classes: Brocoli_green_weeds_2, Fallow, Fallow_smooth,
Fallow_rough_plow, Stubble, Celery, Grapes_untrained, and
Vinyard_untrained. Fig. 10(a) shows the Salinas dataset. The
ground truth of the Salinas dataset is provided in Fig. 10(b). In
order to enhance the efficiency, PCAfeature reduction is conducted
and the first 10 features are used for the clustering.

Fig. 10(c)–(g) illustrates the clustering results of the Salinas
AVIRIS image using FCM, FCM_S1, FCIDE, AFCM_S1, and
AMASFC, respectively. Here, it should be noted that the class
number is fixed for FCIDE because of the fact that FCIDE cannot
determine the correct number of classes for the Salinas AVIRIS
image with a large number of classes. As can be seen from
Fig. 10, there are more isolated pixels in the results of FCM

and FCIDE, especially in the Grapes_untrained class and the
Vinyard_untrained class, than for the three other classifiers due
to these methods not taking the spatial information into account.
In addition, visually, AMASFC achieves the best clustering
performance for the Fallow class.

The quantitative comparisons for the image, theOA and kappa
coefficient, are listed in Table III, in which the mean and the
standard deviation of the 10 runs of AMASFC are listed. The
results indicate that the methods using local spatial information,
such as FCM_S1, AFCM_S1, and AMASFC, achieve better
clustering results, compared with the methods that do not use
local spatial information, such as FCM and FCIDE. In addition,
for the Fallow class, AMASFC achieves the best producer’s
accuracy, 83.44%, and the smallest difference between the

Fig. 10. Salinas AVIRIS image and the clustering results: (a) Salinas image (RGB 70, 27, 17), (b) ground truth, (c) FCM, (d) FCM_S1 ( ), (e) FCIDE,
(f) AFCM_S1, and (g) AMASFC.
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producer’s accuracy and the user’s accuracy is 3.44%.AMASFC
obtains the best OA, 79.72%, with gains of 3.61%, 1.21%,
1.58%, and 1.08% over FCM, FCM_S1, FCIDE, and
AFCM_S1, respectively. Overall, the quantitative comparison
of the five algorithms is consistent with the above qualitative
finding in that AMASFC outperforms the four other classifiers.
As can be seen from the clustering results in Fig. 10, roads that
show up in the Fallow class suggest that the image could be
classified into more clusters. However, it is still a problem to
acquire the ground truth and to assess the clustering results. In
[42], remote sensing imagewithmany classes is clustered. In [1],
CONNindex, based on CONN matrix concept, is specially
proposed to assess complex cluster structures. In our future
work, more focus will be put on the above problems.

E. The Sensitivity of the Parameters

1) The Sensitivity of the Weight of the Spatial Information in
FCM_S1, AFCM_S1, and AMASFC: In order to further test the
validity of the adaptive spatial informationweight, Fig. 11 shows
the OA of FCM_S1 corresponding to different values for the
above three images (the FLC image, the Wuhan TM image, and
the Salinas AVIRIS image). It should be noted that both
AFCM_S1 and AMASFC are the proposed methods in this
paper. However, AFCM_S1 only uses the proposed adaptive
trade-off parameter, instead of introducing a memetic algorithm,
as in AMASFC. As can be seen from the above discussion, the
value of for the two proposedmethods, namely AFCM_S1 and
AMASFC, is determined adaptively. However, the value of for

FCM_S1 is tuned and determined manually. In Fig. 11, the
horizontal axis denotes the variation range of for FCM_S1. The
two lines represent the constant OA for the two proposed
methods, and the constant clustering accuracy of the two
proposed methods and the varying clustering accuracy of
FCM_S1 are compared. As shown in Fig. 11, although the
OA of AFCM_S1 is a little lower than the best OA of
FCM_S1, the spatial information weight of AFCM_S1 is
determined adaptively. For the Salinas AVIRIS image, in
particular, AFCM_S1 can get nearly the same OA as
FCM_S1. Moreover, by the optimization of the memetic
algorithm, the clustering result of AFCM_S1 is dramatically
enhanced for the above three dataset images. Again, AMASFC
achieves the best clustering result.

2) The Sensitivity of Parameter in the GLS: The parameter
determines the efficiency of the local search in theGLS because of
the sparsity of the solutions with the increment in the dimension.
Figs. 12(a) and 13(a) show the variation of Jm for different values
of for the FLC image and the Wuhan TM image, respectively.
The range of generation is from8 to 100, considering that the local
search plays a much more important role in the later stage than
in the initial stage. Hence, the variation of Jm caused by the
local search can be more distinct. As can be seen from Figs. 12(b)
and 13(b), the biggest Jm increment appears when and

for the FLC image and Wuhan TM image, respectively,
meaning that the GLS functions much better in the optimization
progress when and , compared with the other
values. For example,when a larger value of is chosen, the chance
of high-quality solutions becomes less due to the sparsity of the

TABLE III
COMPARISON OF THE RESULTS FOR THE SALINAS AVIRIS IMAGE

PA, producer’s accuracy; UA, user’s accuracy.

ZHONG et al.: SPATIAL INFORMATION FOR REMOTE SENSING IMAGERY 1245



solutions. On the other hand, if a smaller value of is chosen, the
performance improvement of the solutions is limited. Hence,
when and for the FLC image and the Wuhan
TM image, respectively, the largest Jm increment can be achieved.
In the same way, the optimal value of can be obtained, which is

for the Salinas AVIRIS image. As can be seen from the
results, inmost cases, the different images have different values of
the parameter .

F. The Impact of Different Types of Areas

Fig. 14(f) shows the trade-off parameter map after density
slicing. After the density slicing, four levels of trade-off parame-
ter value are generated, which are marked with different colors.
As can be seen from Fig. 14(f), the homogeneous areas such as
river and lake have smaller trade-off parameter values, indicating
that the pixels in these areas do not need to consider much spatial

Fig. 12. Sensitivity of parameter in the GLS for the FLC image: (a) the variation of Jm for different values of and (b) the Jm increment for different values
of .

Fig. 13. Sensitivity of parameter in theGLS for theWuhanTMimage: (a) the variation of Jm for different values of and (b) the Jm increment for different values of .

Fig. 11. Influence of for FCM_S: (a) FLC image, (b) Wuhan TM image, and (c) Salinas AVIRIS image.
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information. The heterogeneous areas such as the urban areas are
constrained with more spatial information. Furthermore, as can
be seen from Fig. 14(b) and (c), the basic structure of the roads
can be preserved. On the other hand, due tomore consideration of
the spatial constraint, the urban areas in Fig. 14(d) and (e) have
fewer isolated pixels, which is more in line with the real situation
when compared with the results of FCM.

V. CONCLUSION

This paper proposes an adaptive fuzzy clustering algorithm
with spatial information for remote sensing imagery, namely
AFCM_S1, which defines an objective function to adaptively
determine the trade-off parameter. An adaptive memetic fuzzy
clustering algorithm with spatial information for remote sensing
imagery, namely AMASFC, is also proposed. In AMASFC, a
memetic algorithm is used to further enhance the clustering perfor-
mance by introducing a local search method, namely GLS. The
parameter in GLS, which determines the local search efficiency,
is obtained by comparing the Jm increment for different values of
. The experimental results confirm the efficiency of the proposed
method. Although the performance improvements in clustering
precision are not so impressive, the proposed methods can adap-
tively determine the weight of contribution from the spatial
neighborhood. The proposed methods are, therefore, more con-
venient and automated than the traditional clustering algorithms.

The experimental data in this paper are relatively simple.
Therefore, in our future work, more complex scenarios will be
considered, which can be found in many real remote sensing
situations such as those in [42] and [43], in which complex,
multiple-class clustering with subtle spectral differences is
addressed. In addition, the acquisition of the ground truth of
the remote sensing image with many classes is still a problem,
which results in the difficult subject in the process of clustering
results assessment. It is an alternative to specially develop a
new index suitable for the proposedmethod such as in [1], which
will be one of our future works.
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