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Abstract—High spatial resolution (HSR) remote sensing im-
agery provides abundant geometric and detailed information,
which is important for classification. In order to make full use
of the spatial contextual information, object-oriented classification
and pairwise conditional random fields (CRFs) are widely used.
However, the segmentation scale choice is a challenging problem
in object-oriented classification, and the classification result of
pairwise CRF always has an oversmooth appearance. In this
paper, a hybrid object-oriented CRF classification framework for
HSR imagery, namely, CRF + OO, is proposed to address these
problems by integrating object-oriented classification and CRF
classification. In CRF + OO, a probabilistic pixel classification
is first performed, and then, the classification results of two CRF
models with different potential functions are used to obtain the
segmentation map by a connected-component labeling algorithm.
As a result, an object-level classification fusion scheme can be
used, which integrates the object-oriented classifications using a
majority voting strategy at the object level to obtain the final
classification result. The experimental results using two multispec-
tral HSR images (QuickBird and IKONOS) and a hyperspectral
HSR image (HYDICE) demonstrate that the proposed classifi-
cation framework has a competitive quantitative and qualitative
performance for HSR image classification when compared with
other state-of-the-art classification algorithms.

Index Terms—Classification fusion, conditional random fields
(CRFs), high spatial resolution (HSR), object-oriented classifica-
tion, remote sensing.

I. INTRODUCTION

THE availability of high spatial resolution (HSR) remote
sensing imagery obtained from satellites (e.g., IKONOS,

QuickBird, and WorldView-2) increases the possibility of accu-
rate Earth observations [1]. Such HSR imagery provides valu-
able geometric and detailed information, which is important
for applications such as damage assessment for environmental
disasters, precision agriculture, security applications, and urban
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planning [2]. In these applications, mapping the predefined land
cover type to the ground area denoted by image pixels (i.e., the
classification task) is particularly relevant [3].

The traditional pixel-based classification methods, which
are also called pixelwise classification, process each pixel
independently without considering the correlations between
neighboring pixels [4], [5]. These classification methods, e.g.,
support vector machine (SVM) [6], [7], neural networks [8],
and the maximum likelihood classifier (MLC) [9], have been
widely used for remote sensing imagery in many applications.
One particular type of pixel-based classification, which is called
probabilistic pixelwise classification (e.g., MLC), can produce
the posterior probabilities of the samples belonging to the
classes, which is particularly useful in practical recognition
situations. In addition, certain dimension reduction and man-
ifold learning [10]–[14] methods, as a preprocessing step of
the pixel-based classification, can be first used to obtain the
more representative features, particularly for medium or coarse
spatial resolutions. However, with the gradual increase in the
spatial resolution, the spectral variability within each land cover
class increases, and the separability between classes decreases.
As a result, these methods are less effective for HSR imagery,
in which the salt-and-pepper appearance of the classification
results in an increase in classification errors.

In order to overcome this problem, classification methods
incorporating spatial information in the classification are nec-
essary when considering the geometrical information in HSR
imagery [15]. There are two main approaches to incorporating
spatial contextual information: random fields and object-
oriented classification methods. The object-oriented classifica-
tion approaches [16] process each segmentation region as a
whole rather than individual pixel, and the key step is to seg-
ment the image into relatively homogeneous regions called seg-
mentation regions or objects [17]. Many different approaches,
such as the fractal net evolution approach (FNEA) [18], the
mean-shift segmentation (MSS) approach [19], and watershed
segmentation [20], have been used to deal with this problem.
A majority voting strategy after the pixel-based classification
or the direct classification using region features is then applied
to transform the segmentation map into the classification result
[21]–[23]. Using the segmentation regions as the basic analysis
units helps to overcome the salt-and-pepper appearance of the
classification. The reason for this is that incorporating the
spatial contextual information, such as size, shape, texture,
and geometrical structure, helps to alleviate the within-class
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spectral variability [24]. However, the classification result is
directly affected by the segmentation scale, which is important
but challenging to choose [25]. For single-scale segmentation,
the difficulty of choosing the scale is that there is no prior
to determine what parameters will produce a good result, and
varying land cover types often have different optimal scales due
to the difference in size [17].

A further interesting approach is the random field method
represented by Markov random fields (MRFs), which not only
incorporates the spatial contextual information but avoids the
scale choice problem for modeling the spatial dependencies of
the pixels. MRF was first introduced into image processing in
1984 [26] and has been widely used in classification problems
in recent years [3], [27]–[29]. In addition, a novel framework
called Markovian support vector classifier (MSVC), integrating
SVM and MRF models in a unique formulation for spatial con-
textual classification, has been recently proposed [30] and has
performed well. However, MRF considers the spatial informa-
tion only in the label image, not in the original observed image
data. An improved model for MRF is the conditional random
field (CRF) model, which directly models the class posterior
probability, given observed data, rather than their joint distribu-
tion. This approach has the ability to incorporate the spatial in-
formation in both the labels and observed image data. CRF was
first proposed by Lafferty et al. [31] for solving the labeling of
1-D text sequences and has been successfully applied in image
segmentation [32], stereo vision [33], and activity analysis [34]
after being first introduced into image analysis by Kumar and
Hebert [35], [36]. The image classification problem is typically
formulated as pairwise CRF, modeling the spatial dependencies
in the local neighborhoods (where the neighborhood is typically
defined as a 4- or 8-neighborhood in the pixel grid), which has
been successfully applied to hyperspectral imagery [37]–[39].
However, the results of this model always have an oversmooth
appearance [39], [40]. Although sometimes the oversmoothing
phenomenon is not obvious in certain images, it is important
to alleviate the effect for HSR imagery due to the presence of
small important structures. In order to cope with this problem,
high-order potentials [40], [41], modeling the more complex
statistics of the image, have been used and have achieved
good performances in experiments. However, it is difficult to
achieve an efficient inference with these high-order potentials,
and they always need to import local or global information,
which increases the complexity of the model.

In this paper, a hybrid object-oriented CRF classification
framework for HSR imagery (CRF + OO) is proposed to utilize
both the pairwise CRF model and the object-oriented classifi-
cation method, to incorporate the spatial contextual information
for HSR imagery classification. The CRF + OO classification
framework is described in the following.

1) A CRF classification framework containing two CRF
models is designed. The two CRF models have the same
pairwise potential to consider the neighborhood inter-
actions but different unary potentials, which are called
the log unary potential and the quasi-gamma unary po-
tential, respectively; thus, the corresponding models are
represented as CRF-LOG and CRF-QG, respectively. The

unary potentials use probabilistic pixelwise classification
to model the relationship between the observed data
and the corresponding label. However, the quasi-gamma
unary potential in CRF-QG is designed to give a larger
weight to the spectral information, to impose a restric-
tion on the less-possible pixel labels and to favor the
most likely labels of the land cover types. Therefore,
CRF-LOG and CRF-QG always have different degrees
of smooth classification performance, and they provide
complementary information about the land cover type
since they also possess the same pairwise potential, which
allows them to have the ability to incorporate spatial
information.

2) Although the potentials have been modeled in the CRF
classification framework, the inference searching for the
best solution corresponding to the optimal pixel labeling
is an NP-hard problem [42] for the multivalued variables
in HSR imagery classification. To find the optimal label-
ing, different approaches, e.g., iterated conditional modes
(ICMs), loopy belief propagation (LBP), and graph cuts,
have been proposed. However, ICM easily gets stuck at
poor local minima; thus, it is extremely sensitive to the
initial estimate, and LBP is not guaranteed to converge.
In this paper, the graph-cut-based α-expansion algorithm
[43] is applied to the HSR imagery classification since
it has a better performance (efficiency and accuracy) in
computer vision [44].

3) To obtain a more robust and excellent classification result,
a classification fusion scheme is proposed to make full
use of the former classification information. Since the
results of the two CRF models incorporate the spatial con-
textual information, the CRF-LOG and CRF-QG maps
have the ability to obtain homogeneous regions. There-
fore, they are selected to obtain the segmentation result
by the connected-component labeling algorithm so that
we can make a fusion of the classification information
at the object level. In addition, the classification map
can provide prior class information to address the scale
choice problem because the classification result reflects
the distribution information of the materials of interest, so
that the scale of the segmentation meets the requirement
of all the land cover classes. The final classification result
is achieved by integrating the object-oriented classifica-
tions, using a majority voting strategy with a region size
constraint at the object level.

The efficiency of the proposed CRF + OO classification
framework is confirmed by performing experiments on three
data sets, which consists of two multispectral HSR images
(QuickBird and IKONOS) and a hyperspectral HSR image
(HYDICE). Compared with other state-of-the-art algorithms,
the proposed algorithm has a remarkable quantitative and qual-
itative performance.

The remainder of this paper is organized as follows.
The general MRF and CRF models are briefly presented in
Section II. In Section III, we give a detailed description of
the CRF + OO classification framework for HSR imagery.
Section IV provides the experimental results, and the sensitivity
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analysis is discussed in Section V. In the final section, the
conclusion is given.

II. MARKOV AND CONDITIONAL RANDOM FIELD MODELS

In probabilistic schemes, undirected graphical models, also
referred to as random fields, have been used to incorporate
spatial contextual information in computer vision. As described
in Section I, this random field method of modeling the neigh-
borhood interactions is very important in HSR remote sens-
ing image classification and can improve the performance of
pixelwise classification. MRF is the most popular undirected
graphical model, incorporating the local dependencies between
random variables using probabilistic frameworks [27], [36]. In
the MRF classification framework, the posterior probability of
the labels, given the image data, is described in the following,
which is based on Bayes’ rule:

P (x|y) ∝ P (x,y) = P (x)P (y|x) (1)

where x represents the corresponding labels of the whole
image, and y are the observed data from an input image. The
MRF framework models the joint probability of the observed
data and the corresponding labels P (x,y). In MRF, P (x) is
the prior distribution of the labels x, which is formulated as a
Gibbs distribution to consider the spatial information, i.e.,

P (x) =
1

Z
exp

{
−
∑
c∈C

ψc(xc)

}
(2)

where Z =
∑

x exp{−
∑

c∈C ψc(xc)}, which is usually named
the partition function, is a normalization factor, and the term
ψc(xc), which is called the potential function, is locally defined
in the clique c, which is a subset of variables xc ⊆ x. C is
the set of all the cliques. For computational tractability, the
observed data are assumed to be conditionally independent,
and the likelihood P (y|x) can have a factorized form, i.e.,
P (y|x) =

∏
P (y|x). However, it should be noted that the

spatial contextual interaction modeled by the term P (x) is
restricted to the labeling field and does not depend on the
observed data.

Compared with generative MRF expending efforts to model
the joint distribution P (x,y), CRF directly models the poste-
rior probability of the labels, given the image data P (x|y) [31],
[36] with the following form, which is that we want to estimate
in the classification task:

P (x|y) = 1

Z(y)
exp

{
−
∑
c∈C

ψc(xc,y)

}
(3)

where Z(y) =
∑

x exp{−
∑

c∈C ψc(xc,y)} is the partition
function, and the term ψc(xc,y) denotes the potential function.
In the classification problem, the most common CRF model is
known as pairwise CRF, which models the spatial dependencies
of pairs of random variables in the local neighborhoods. In
theory, the potential functions can include unary potentials,

pairwise potentials, and even high-order potentials, based on
the different types of cliques in the observed data and their
corresponding labels. CRF can incorporate more wide-ranging
contextual information, as defined by the high-order neigh-
borhood system and the cliques for the high-order potentials.
However, optimization methods for the general case are infea-
sible. Therefore, in this paper, we use pairwise CRF with an
8-neighborhood.

It can be seen from the formulations of MRF in (1) and
(2) and CRF in (3) that both the MRF and CRF models have
the ability to consider the spatial contextual information in the
label fields, but the CRF model also has the ability to permit
interactions in the observed data. The CRF model directly
models the posterior distribution as a Gibbs field, which allows
the model to incorporate the contextual information in a more
flexible way. The classification problem is typically formulated
as pairwise CRF, which has been successfully applied in various
image analysis fields [32]–[34], [39], [40]. However, the results
of this model will always have an oversmooth appearance, to
some degree, in the classification application. Therefore, to
utilize the pairwise CRF model and alleviate the oversmooth-
ing, a hybrid object-oriented CRF classification framework
(CRF + OO) is used for the spatial contextual classification
of HSR imagery in this paper.

III. HYBRID OBJECT-ORIENTED CRF
CLASSIFICATION FRAMEWORK

In this paper, in order to make full use of the spatial
contextual information for the classification of HSR remote
sensing imagery, a hybrid object-oriented CRF classification
framework (CRF + OO) is proposed by integrating CRF and an
object-oriented classification method, which both incorporate
information on the spatial context of each pixel. The proposed
CRF + OO for HSR imagery can be described in three main
steps, as shown in Fig. 1.

In the probabilistic pixelwise classification step, for the
input HSR imagery and the training samples, a probabilistic
pixelwise classification is first performed to obtain the initial
classification result and the corresponding probability map. In
this paper, the probabilistic SVM classifier is applied for this
purpose.

The CRF classification framework step, as the second step,
is performed by combining the spectral and spatial information,
the goal of which is to obtain the classification result of CRF by
carrying out the graph-cut-based α-expansion algorithm. This
step takes the probability map from the first step and the original
HSR imagery as the input and consists of two CRF models,
which have the same pairwise potential but different unary
potentials, which are called the log unary potential and the
quasi-gamma unary potential, respectively. The corresponding
models are represented as CRF-LOG and CRF-QG, respec-
tively, in the classification framework, and they export two cor-
responding classification maps. Since CRF-LOG and CRF-QG
both have the ability to incorporate spatial information but
possess different unary potentials, they always have different
degrees of smooth classification performance and can provide
complementary information about the land cover types.
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Fig. 1. Flowchart of the hybrid object-oriented CRF classification framework.

In the classification fusion step, the segmentation is first per-
formed by the connected-component labeling algorithm, using
the CRF-LOG and CRF-QG classification results obtained in
the second step. Object-oriented classification maps can be then
obtained by a majority voting strategy, using the segmentation
map and the classification map. The final classification result
is achieved by integrating the former object-oriented classifica-
tions at the object level.

A. Probabilistic Pixelwise Classification

The first step of the proposed framework consists of per-
forming a probabilistic pixelwise classification of the HSR
imagery. Various classifiers that have a probabilistic output
can be used. However, the SVM classifier is suggested due
to its high capacity and greater adaptability. In other words,
whether in the case of high dimensions and a small training set
or not, SVM always shows a good performance. More details
about the SVM classifier can be found in [45]. In this step, the
classification map and the corresponding probability map with
the posterior probabilities that the samples belonging to the
classes are expected to obtain. However, the output of general
SVM, via the decision function, is only a class label without
probability information. In order to obtain the probability es-
timates, Platt’s formulation is used to map the output into the
probability [45], [46]. Then, the remaining problem is how to
expand the algorithm from binary classification to multiclass
classification. The “one-against-one” approach is suggested in
[45]. Assuming that k is the number of classes, we construct
k (k − 1)/2 classifiers so that each classifier trains data from

two classes. Finally, in the classification, a majority voting
strategy is used. More details can be found in [45].

B. CRF Classification Framework

Consider an ordered set of variables y = {y1,y2, . . . ,yN},
which denotes the set of spectral vectors of an HSR image,
where N is the total number of pixels of the image, and yi

is the spectral vector of the image pixel i ∈ V = {1, 2, . . . , N}
with length d (the number of spectral bands). The classification
image is denoted by x = {x1,x2, . . . ,xn}, where xi in x takes
the value of the label set L = {1, 2, . . . ,K}. K is the number
of classes.

Under Bayes’ framework, the image classification can cor-
respond to finding the maximum a posteriori (MAP) estimate
of the label image, such that xMAP = argmaxx P (x|y). If x
conditioned on y meets the Markov property, CRF directly
models the posterior probability as a Gibbs distribution in (3).
The corresponding Gibbs energy [40], [41] is defined as

E(x) = − logP (x|y)− logZ(y) =
∑
c∈C

ψc(xc,y). (4)

Therefore, the MAP labeling xMAP of the random field is
given by

xMAP = argmax
x

P (x|y) = argmin
x

E(x). (5)

Equation (5) shows that the maximization of the posterior
probability P (x|y) is equivalent to the minimization of the
energy function E(x). A commonly used example of a CRF
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Fig. 2. Relationship between likelihood and energy value. (a) Log unary potential. (b) Quasi-gamma unary potential.

energy, which has been widely used for remote sensing image
classification, can be written as the sum of the unary and
pairwise potentials, i.e.,

E(x) =
∑
i∈V

ψi(xi) + λ
∑

i∈V,j∈Ni

ψij(xi, xj) (6)

where ψi(xi) is the unary potential term, and ψij is the pairwise
potential term, which is computed over the local neighborhood
Ni of pixel i. The nonnegative constant λ trades off the strength
of the pairwise potential against the unary potential.

After the establishment of the basic model (6), a remaining
problem is how to formulate the two kinds of potentials (i.e.,
unary and pairwise potentials) and obtain the final labels by
inference.

1) Unary Potentials: Unary potentials describe the cost of
a single pixel taking a particular label, which depends on the
local appearance features derived from the image. Typically, the
unary potential ψi(xi) is defined as [3], [32]

ψi(xi) = − ln (P (xi = lk)) (7)

where P (xi = lk) is the probability of pixel xi taking the
label lk, which can be given by various discriminative classi-
fiers. In our work, these probability estimates are from “one-
versus-one” SVM outputs, as described previously. In order to
conveniently describe the details of the algorithm, we call the
unary potential the “log unary potential” because of its log
function form.

The unary potential’s term is related to the pixelwise in-
formation, and the minimization of only this term’s energy
contribution by itself would be equivalent to a noncontextual
Bayesian classification of the image. Therefore, it should be
low when the corresponding pixel is correctly classified and
high when it is misclassified. The log unary potential is for-
mulated as the negative log likelihood of the pixel taking the
related class labels. However, if a small object containing a few
pixels with high likelihood is present in the image, these pixels
tend to be assigned the class label of the surrounding objects
because the log unary potential does not have enough ability
to prevent the smoothing of the pairwise potentials. In order
to suppress the oversmoothing of the classification result, the
quasi-gamma unary potential is defined

ψi(xi) = γ1/P (xi=lk) − γ. (8)

Fig. 2(a) and (b) shows the relationship between the likeli-
hood and the energy value of the log and quasi-gamma unary
potentials when γ = 2, respectively. As with the log unary
potential, the quasi-gamma unary potential is also modeled as
a decreasing function of likelihood. However, compared with
the log unary potential, when the probability density estimate
of the pixel taking the corresponding class label is high, the pe-
nalization of the quasi-gamma unary potential is still low. This
means that the land cover class label of the pixel is maintained
in minimizing the energy function when the confidence of the
pixel taking the class label is high. In addition, the penalization
is much greater when the likelihood is very low, and even
when the likelihood is 0.1, this penalization can reach 1024,
which implies that the land cover class label of the pixel is not
expected to be kept when the confidence is less.

2) Pairwise Potentials: Pairwise potentials model a smooth-
ness prior that encodes the fact that, in real images, neighboring
pixels in homogeneous image regions usually take the same
label. As is typical for pixel labeling with CRF, the contrast-
sensitive smoothness prior ψij(xi, xj) takes the form of [32],
[47], [48]

ψij(xi, xj) =

{
0, if xi = xj
g(i,j)
‖i−j‖2 , otherwise (9)

where

g(i, j) = 1 + θv exp
(
−θw‖xi − xj‖2

)
.

In this paper, the edge feature function g(i, j) is designed to
measure the difference in appearance between the neighboring
pixels. The constant included in g(i, j) is a bias term to be
learned for removing small isolated regions; the pair of (i, j)
represents the spatial location of neighboring pixels; parameter
θv is a constant determining the degree of smoothness, and the
quantity θw is the mean square difference between the spectral
vectors over all the adjacent pixels in the image.

The pairwise potentials incorporate the spatial contextual
information of each pixel, which is expressed in terms of its
neighborhood, to be taken into account in the classification.
When minimizing the energy function E(x), the contrast-
sensitive smoothness prior term penalizes the spatial inconsis-
tencies among neighboring pixels with different class labels,
while favoring, in the output classification map, the same land
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Fig. 3. Graph-cut-based α-expansion algorithm.

cover class, except for boundary regions between homogeneous
image regions. Furthermore, the penalization of different neigh-
boring pixels with different class labels depends on the image
data. According to the function g(i, j), the penalization will
be high when pixels i and j are similar, which means that
the smoothness will be supported in minimizing the energy
function. Furthermore, the penalization will be close to zero if
they are very different, particularly in boundary regions, which
means that their different land cover class labels will be kept in
the process of optimization.

3) Inference by the Graph-Cut-Based α-Expansion Algo-
rithm: Now that we have defined the class of the energy
functions associated with each of the pixels’ label assignments,
we need to find a minimization method for the energy functions.
However, global minimization of these energy functions is
NP-hard [42] because searching for the best solution corre-
sponding to the lowest cost pixel labeling (referred to as the
inference problem) has an extremely large computational cost
[41]. Fortunately, several researchers have proposed solutions
to this inference problem, such as ICM, LBP, and graph cuts.
Among these approaches, the graph cut methods, which for-
mulate the energy minimization problem as a maximum flow
problem over a suitable graph, have been the most popular [44].

Graph cuts have been proven to be fast and to converge
to a global energy minimum in the case of binary classifica-
tion. However, for HSR image classification, the label of an
image is always a multivalued variable. The graph-cut-based
α-expansion algorithm [43], which designs a special local
search algorithm for the energy minimization, is more flexi-
ble. The local search of this algorithm works by repeatedly
computing the global minimum of a binary labeling problem
via a graph cut method in its inner loops. In this sense, the
α-expansion algorithm reduces the problem with multivalued
variables to a sequence of optimization subproblems with bi-
nary variables. The α-expansion algorithm is described in the
following.

Given a current label xp = {xp
i , i ∈ V }, to solve the problem

of very small possible moves making the solution stick at a poor
local minima, as with the ICM methods, the α-expansion step
gives each pixel the following two choices: either keep the cur-
rent label or switch to a particular label α ∈ L = {1, 2, . . . ,K}.
All the pixels make this choice simultaneously; thus, there are
an exponential number of possible moves with respect to any
particular α, which ensures that the algorithm has a strong local
minimum property. The α-expansion algorithm is summarized
in the steps in Fig. 3.

For a particular label α ∈ L in Fig. 3, an efficient way is
needed to find the improved solution, which is denoted by

xn = {xn
i , i ∈ V } with minimal Eα(x

p), in one move of the
expansion algorithm in line 4. Since the expansion moves
are fundamentally binary, we can encode the moves of the
expansion algorithm by the binary variables t = {ti, i ∈ V } as

xn
i =

{
α if ti = 0
xp
i if ti = 1.

(10)

Therefore, the original multilabel energy of (6) can be trans-
formed to a binary energy Eα by (10), whose optimization
process rapidly converges and results in a strong local minimum
when Eα is a submodular function. It is generally known that
a binary energy function can be efficiently minimized if it
is submodular [41]. Therefore, which class of the multilabel
energy functions can result in submodular Eα must be consid-
ered. Fortunately, Boykov et al. [43] explained that a sufficient
condition for this submodularity is the metricity of the pairwise
potentials. Pairwise potentials are called metric, if they satisfy

ψ(la, lb) = 0 ⇔ la = lb

ψ(la, lb) = ψ(lb, la) ≥ 0

ψ(la, lb) ≤ ψ(la, lc) + ψ(lc, lb) (11)

where forall la, lb, lc ∈ L.
It can be easily verified that the pairwise potential energy

function (9) satisfies the submodularity condition (11) [32].
Therefore, the inference can be efficiently minimized using the
graph-cut-based α-expansion algorithm.

C. Classification Fusion Scheme

The previous section gives a description of how to combine
the spatial and the spectral information by modeling the unary
potentials and the pairwise potentials of CRF. However, due to
the land cover complexity of HSR imagery, many structures
may be oversmoothed in the classification map when using
CRF with log unary potential. In order to overcome this over-
smoothing of the log unary potential, the quasi-gamma unary
potential is proposed. The quasi-gamma unary potential gives
the likelihood of a pixel taking a land class label a larger weight,
which makes the quasi-gamma unary potential dependent on
the accuracy of the probability estimation. However, due to
the spatial complexity and the spectral variability of HSR
imagery, it is difficult to arrive at an estimate, particularly in the
case of limited samples. The oversmooth spatial classification
map obtained by CRF with log unary potential can provide
complementary information for the classification result by CRF
with quasi-gamma unary potential. Therefore, a classification
fusion scheme is put forward to take full advantage of both of
these CRF results.

The classification fusion scheme results in a more robust
and excellent classification result by making full use of the
classification information obtained in the first two steps. Since
the results of the two CRF models incorporate the pixels’ spatial
contextual information, the CRF-LOG and CRF-QG maps,
which have a good ability to obtain homogeneous regions,
have a better performance than the SVM map obtained in the
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Fig. 4. Example of segmentation using the connected-component labeling
algorithm.

first step. Therefore, the CRF-LOG and CRF-QG maps are
selected to obtain the segmentation result. The segmentation
is performed by the connected-component labeling algorithm,
finding regions of connected pixels that have the same value in
the CRF-LOG and CRF-QG classification results. The classical
connected-component algorithm with an 8-neighborhood, using
a union-find data structure, is used to assign labels to the objects
[49], [50]. The scale of the segmentation meets the requirement
of all the land cover classes in that a good classification result
basically reflects the distribution of the materials of interest.
As with the example shown in Fig. 4, which is the illustrative
example of segmentation using the connected-component label-
ing algorithm in classification maps with various color thematic
classes, the following can be found.

1) If the region is labeled to the same land cover type by
CRF-QG and CRF-LOG, which means that its label is
trusted, it will be labeled in the segmentation map, such
as the 1, 3, 6, and 7 labels in Fig. 4, so that its label can
remain in the next process.

2) If a small object with a relatively high possibility appears
in the CRF-QG classification, it will be labeled in the
same way as label 2 in Fig. 4 in the segmentation map,
which means that it is not easily smoothed by the classi-
fication fusion scheme.

3) In the case of one region being smoothed to different class
labels by CRF-QG and CRF-LOG, its label is untrusted.
Therefore, this region is labeled in the same way as label 5
in Fig. 4 in the segmentation map, which allows it to be
considered in the next step.

4) In the case of one region being heavily affected by noise
and not being smoothed by CRF-QG or CRF-LOG, it will
be assigned a label in the same way as label 4 in Fig. 4 in
the segmentation map, so that it can be smoothed in the
next process.

The segmentation map is achieved by the connected-
component labeling algorithm. The object-oriented classi-
fication results, which are called the SVM-OO map, the
CRF-LOG-OO map, and the CRF-QG-OO map, respectively,
are then obtained by using the corresponding classification map
to undertake majority voting. It is the segmentation that can
allow the integration of the former classifications at the object

Fig. 5. Flowchart of the classification fusion scheme.

level. In order to achieve the final classification result, the key
problem is to design a classification fusion scheme that makes
full use of all the object-oriented classification information,
which is shown in Fig. 5. We analyze each segmentation region
as follows.

1) If a region is very small, which is controlled by a defined
region size represented by symbol S, it is expected to be
labeled by a more smooth result to alleviate the noise
effects. This is because the small regions are always a
result of the difference between the CRF-LOG and CRF-
QG maps, due to the spectral variability and noise.

2) If a region is large enough, the label of the region is
considered to be a voting of the SVM-OO, CRF-LOG-
OO, and CRF-QG-OO maps. Finally, the region is des-
ignated to be in the class with the maximum number
of votes. However, in the case of three classes having
identical votes, it may be difficult to determine the label.
Analyzing the source of the whole data, we can find
that the CRF-LOG-OO and CRF-QG-OO maps both have
the possibility of being smoothed by neighboring region
pixels. Therefore, the SVM-OO result is used in this case.

IV. EXPERIMENTAL RESULTS

Three HSR remote sensing image data sets [22], consisting of
two multispectral HSR images (QuickBird and IKONOS) and a
hyperspectral HSR image (HYDICE), are presented to test the
performance of the proposed CRF + OO classification frame-
work. The comparison experiments are conducted by pixelwise
classification, object-oriented classification, and random field
methods. The SVM classifier implemented in LibSVM [45]
is used to make the pixelwise classification. The radial basis
function kernel is selected in all the experiments on account of
its excellent performance in HSR image classification, and the
strategy of cross-validation is applied to determine the optimal
parameters. As for the parameters C and γ of SVM, the range
of C is set from 20 to 210, while the range of γ is set from
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Fig. 6. Fancun QuickBird data set. (a) RGB false-color image (3, 2, 1).
(b) Ground truth image.

2−10 to 210. The object-oriented classification methods used in
our comparison experiments are methods based on MSS [19]
and the multiresolution segmentation algorithm in eCognition
8.0 (FNEA) [18], using a majority voting strategy [21], [22]
with the same pixelwise SVM classification result, and are
denoted by MSS-OO and FNEA-OO, respectively. For the MSS
algorithm, the spatial/spectral bandwidth parameters are chosen
from the range [1, 19] and [10, 200], respectively. For the
FNEA algorithm, the importance of each band is supposed to
be equal in the experiments; thus, the image layer weights of
the segmentation are all set to be 1; the shape and compactness
parameters in the composition of the homogeneity criterion
are set to 0.1 and 0.5, respectively. The remaining parameter,
i.e., the scale parameter, has a major impact on the segmentation
and is selected from the range [10, 100] by a grid search
method. Moreover, the MSVC, as a random field method
combining SVM and MRF in an integrated framework for
contextual image classification, is also used. More details can
be found in [30].

In our experiments, not only is the classification result of
CRF + OO shown, but the intermediate segmentation result
of the CRF + OO classification framework is also presented
and is represented by CRF-SEG, to prove its good performance
when compared with the traditional object-oriented classifi-
cation methods. Moreover, the two CRF classification results
(CRF-LOG and CRF-QG) in the CRF classification framework
are also shown in the series of experiments.

To assess the experimental results, four kinds of accuracies
are used, which are the accuracy of each class, the overall
accuracy (OA), the average accuracy (AA), and the kappa
coefficient (Kappa). OA is the fraction of correctly classified
pixels, with regard to all the pixels of that ground truth class,
and AA is the average of all the class accuracies. To allow a fair
comparison, the classification results with the highest OA are
selected for all the classification algorithms.

A. Experimental Data Sets

The first experiment image is from the Fancun area in Hainan
Province, China, and was acquired in January 2010 by the
QuickBird sensor. The image is of 400 × 400 pixels, with a
spatial resolution of 2.4 m, and four multispectral channels.
Fig. 6(a) gives an overview of this data set by combining

TABLE I
CLASS INFORMATION OF THE FANCUN QUICKBIRD IMAGE

Fig. 7. Wuhan IKONOS data set. (a) RGB false-color image (3, 2, 1).
(b) Ground truth image.

TABLE II
CLASS INFORMATION OF THE WUHAN DATA SET

the first, second, and third bands. The corresponding ground
truth is shown in Fig. 6(b). Seven classes of interest are con-
sidered, as detailed in Table I, which also shows the number
of the training and test samples for each class. The train-
ing samples are randomly chosen from the reference ground
truth data.

Data from a different sensor are used in the second exper-
iment to confirm the validity of the proposed algorithm. The
image is of an urban area, with a spatial resolution of 4 m, and
was acquired by the IKONOS satellite from Wuhan in Hubei
Province, China. Fig. 7(a) and (b) presents an intuitive view of
this image and the corresponding land cover types, respectively.
The image size is 400 × 600 pixels, with blue, green, red, and
near-infrared spectral channels. Like the Fancun data set, this
image also contains seven thematic classes of interest. Table II
shows the training and test samples and their labels.

The third experiment is performed using a subset of the
Washington DC data set, which is a hyperspectral image ac-
quired by the Hyperspectral Digital Imagery Collection Exper-
iment (HYDICE) sensor. The image size is 307 × 280 pixels,
with 191 bands. Fig. 8(a) shows its false-color appearance, and
the corresponding land cover types of interest are shown in
Fig. 8(b). Table III gives the number of training and test samples
for each class of interest.
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Fig. 8. Washington DC HYDICE data set. (a) RGB false-color image (60, 27,
17). (b) Ground truth image.

TABLE III
CLASS INFORMATION OF THE WASHINGTON DC HYDICE IMAGE

B. Experimental Setup

For the Fancun, Wuhan, and Washington DC data sets, the
optimal parameters giving the highest accuracies for all the
classification approaches are set as follows. The parameters
C/γ of SVM are set to 256/0.5, 4096/0.5, and 16 384/0.125,
respectively. For the MSS algorithm, the spatial/spectral band-
width parameters are chosen as 15/20, 1/140, and 19/10, re-
spectively. For the FNEA algorithm, the segmentation scale
parameters are selected to be 20, 20, and 80, respectively. The
λ and θv parameters of CRF-LOG are set to 1.2/0.2, 0.6/1.8,
and 0.3/1.5, respectively; whereas they are selected as 190/2.1,
160/2.1, and 13/1.8 for CRF-QG. Finally, for CRF + OO, the
size parameters represented by the symbol S are set to be 25,
5, and 20, respectively. In addition, it should be noted that the
computation times of CRF + OO are only 10, 15, and 10 s,
respectively, without considering the time cost of SVM, using
a computer of 3.1 GHz with 8-GB random access memory,
because the α-expansion inference algorithm based on graph
cut is very fast.

C. Experimental Results and Analysis

For the Fancun, Wuhan, and Washington DC data sets, the
classification results are shown in Figs. 9–11; the classifi-
cation maps of the different algorithms (i.e., SVM, FNEA-
OO, MSS-OO, CRF-LOG, CRF-QG, CRF-SEG, MSVC, and
CRF + OO) are respectively presented in the subfigures of the
corresponding classification results. From these classification
maps, it can be seen that the SVM algorithm, which does
not consider any neighborhood spatial contextual information,
results in a mass of isolated salt-and-pepper classification noise,
whereas the algorithms taking into account the neighborhood
interactions (i.e., FNEA-OO, MSS-OO, CRF-LOG, CRF-QG,

Fig. 9. Classification results for the Fancun QuickBird data set. (a) SVM.
(b) FNEA-OO. (c) MSS-OO. (d) CRF-LOG. (e) CRF-QG. (f) CRF-SEG.
(g) MSVC. (h) CRF + OO.

CRF-SEG, MSVC, and CRF + OO) exhibit much better visual
classification results.

As for the CRF-LOG algorithm, it produces an oversmooth
classification result, and it is the λ parameter that mainly
controls the strength of the spatial contextual information. As
shown in Figs. 9(d), 10(d), and 11(d), this oversmoothing phe-
nomenon is obvious for the more complex man-made objects
for the Fancun and Wuhan data sets. However, the oversmooth
performance is less obvious in the result of the Washington
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Fig. 10. Classification results for the Wuhan IKONOS data set. (a) SVM.
(b) FNEA-OO. (c) MSS-OO. (d) CRF-LOG. (e) CRF-QG. (f) CRF-SEG.
(g) MSVC. (h) CRF + OO.

DC experiment since there are many spectral bands that have a
certain ability to distinguish the varying land cover types. This
means that the optimal λ parameter, which mainly controls the
strength of the spatial contextual information, is very small, i.e.,
the neighborhood spatial interactions are less.

For the CRF-QG algorithm, which is proposed to alleviate
the oversmoothing, it is shown that the oversmoothing phe-
nomenon is less serious in Figs. 9(e), 10(e), and 11(e). How-
ever, it was noted previously that CRF-QG puts more emphasis
on the spectral information; thus, the classification depends
on the pixelwise classification result to a great extent, which
perhaps explains the misclassification and the undersmoothing
of CRF-QG, as shown in black box 2 in Fig. 9(e).

CRF-SEG uses the complementary information of CRF-
LOG and CRF-QG to obtain the segmentation maps presented
in Figs. 9(f), 10(f), and 11(f), which lays a solid foundation
for the information fusion on the object layer for the CRF +
OO algorithm. The classification result of CRF + OO is
presented in Figs. 9(h), 10(h), and 11(h), and it is shown
to have a competitive performance, as highlighted in black
boxes 1 and 2.

Fig. 11. Classification results for the Washington DC HYDICE data set.
(a) SVM. (b) FNEA-OO. (c) MSS-OO. (d) CRF-LOG. (e) CRF-QG. (f) CRF-
SEG. (g) MSVC. (h) CRF + OO.

The quantitative performances with the highest classification
accuracies obtained by SVM, FNEA-OO, MSS-OO, CRF-
LOG, CRF-QG, CRF-SEG, MSVC, and CRF + OO are re-
ported in Tables IV–VI. From the tables, a similar conclusion
can be reached, in that the algorithms taking spatial contex-
tual information into account show a great improvement over
the pixelwise SVM classification in classification accuracy.
Moreover, the accuracy of CRF-SEG is higher than the two
other object-oriented classification methods (i.e., FNEA-OO
and MSS-OO), which confirms that the segmentation scale of
CRF-SEG can be adaptively obtained for varying land cover
types. For the Wuhan data set, the quantitative performance
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TABLE IV
CLASSIFICATION ACCURACIES FOR THE FANCUN QUICKBIRD DATA SET

TABLE V
CLASSIFICATION ACCURACIES FOR THE WUHAN IKONOS DATA SET

TABLE VI
CLASSIFICATION ACCURACIES FOR THE WASHINGTON DC HYDICE DATA SET

of CRF-QG reported in Table V shows a great improvement
in AA, and the 20% accuracy improvement (from 69.14% to
91.33%) of shadow for CRF-QG compared with CRF-LOG
shows that CRF-QG puts more emphasis on spectral infor-
mation; thus, it has the ability to restrain some land cover
types from smoothing. Finally, from the classification accuracy
tables, it can be seen that CRF + OO obtains the highest
accuracy.

V. SENSITIVITY ANALYSIS

In Section IV, the three sets of experimental results indicate
that CRF + OO performs well. Furthermore, it has only one
parameter that has an impact on the classification performance.
Here, an additional analysis of the effect of the size parameter
represented by S is given. This parameter is the fusion pa-
rameter reflecting the confidence for the classification of CRF-
LOG. In addition, in the hybrid classification framework, the
CRF parameters (CRF-LOG and CRF-QG) indirectly affect the
classification performance of CRF + OO; thus, a corresponding
sensitivity analysis is also given. Finally, a sensitivity analysis
of the number of training samples is conducted to further inves-
tigate the robustness of CRF + OO. Additional experiments are
also conducted to evaluate the effect of these parameters on the
Fancun, Wuhan, and Washington DC data sets.

Fig. 12. Sensitivity analysis for the fusion parameter size, with the three
data sets (Fancun QuickBird, Wuhan IKONOS, and Washington DC HYDICE
images).

A. Sensitivity Analysis for the Fusion Parameter S

The parameter S is the fusion parameter size, which reflects
the confidence for the classification of CRF-LOG. In order to
analyze its sensitivity, another set of experiments is performed
for the Fancun, Wuhan, and Washington DC data sets by
varying the parameter S from 0 to 45, with an interval of 5.
The result is reported in Fig. 12.
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Fig. 13. Sensitivity analysis for the parameters of CRF-QG in the CRF + OO classification fusion framework, with the three data sets. (a) Fancun QuickBird
image. (b) Wuhan IKONOS image. (c) Washington DC HYDICE image.

Fig. 14. Sensitivity analysis for the parameters of CRF-LOG in the CRF + OO classification fusion framework, with the three data sets. (a) Fancun QuickBird
image. (b) Wuhan IKONOS image. (c) Washington DC HYDICE image.

As shown in Fig. 12, with the gradual increase in the size
of S, the classification accuracy of CRF + OO first increases
for all the data sets. The accuracy then remains roughly stable
for the Fancun data set but slightly decreases for the Wuhan
and Washington DC data sets. The increase in the parameter S
means an increase in the smoothing effect of CRF-LOG in a
defined small region; thus, the capability of removing the salt-
and-pepper classification noise becomes increasingly strong,
which leads to the initial increase in the classification accuracy.
However, after the parameter reaches a certain value, the spatial
smoothing effect can become too much, and the result of CRF-
LOG tends to be oversmoothed. However, the fusion result
is not susceptible to the classification of CRF-LOG in large
regions due to the use of a majority voting strategy, so that
there may be an appropriate stable result in the CRF + OO
experiments, which leads to the remaining unchanged or slight
decrease in the classification accuracies.

B. Sensitivity Analysis for the CRF Parameters

In order to study the sensitivity for the parameters of CRF-
QG in the classification fusion framework, the other parameters
are set to be constant. In the additional experiments for the
Fancun, Wuhan, and Washington DC data sets, λ and θv of
CRF-LOG and the size parameter are set to be 1.1/1.2/25,
0.9/1.5/5, and 0.5/1.5/20, respectively. In addition, parameter
λ of CRF-QG, i.e., λQG, is set from 10 to 190 with an interval
of 20, and parameter θv of CRF-QG, i.e., θv-QG, is selected
from 0 to 1.8 with an interval of 0.3 for the three data sets. The

relationship between the parameters λ and θv of CRF-QG and
the classification accuracy (OA) is reported in Fig. 13(a)–(c).

As shown in Fig. 13(a)–(c), the classification accuracies of
CRF + OO first increase and then remain approximately stable,
on the whole, with the increase in parameter λQG when keeping
θv-QG unchanged. The increase in parameter λQG means an
increase in the spatial effect; thus, the capability of using the
neighborhood spatial information to remove the salt-pepper
classification noise becomes increasingly strong, which leads to
the initial increase in the classification accuracy. However, after
parameter λQG reaches a certain value, the spatial smoothing
effect may become too great. However, since the quasi-gamma
unary potential strengthening the spectral information trades off
the smoothing information and the spectral information, there
may be an appropriate stable result in the CRF + OO exper-
iments. For parameter θv-QG, a fine-tuning function for the
classification accuracy is found when keeping λQG unchanged.

When studying the impact of the parameters of CRF-LOG in
the CRF + OO framework on the classification accuracy, we
set the other parameters of CRF + OO to be constant. Another
set of experiments is performed for the Fancun, Wuhan, and
Washington DC data sets, where λ and θv of CRF-QG and the
size parameter are set to be 190/2.1/25, 160/2.1/5, and
13/1.8/20, respectively. In addition, parameter λ of CRF-LOG,
i.e., λLOG, is set from 0.1 to 1.9 with an interval of 0.2, and pa-
rameter θv of CRF-LOG, i.e., θv-LOG, is selected from 0 to 1.8
with an interval of 0.3 for the three data sets. The relationship
between λLOG, θv-LOG, and the classification accuracy (OA) is
reported in Fig. 14(a)–(c).
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Fig. 15. Sensitivity analysis for the number of training samples, with the three data sets. (a) Fancun QuickBird image. (b) Wuhan IKONOS image. (c) Washington
DC HYDICE image.

From Fig. 14(a)–(c), we can draw a similar conclusion, in
that the classification accuracies of CRF + OO first increase
and then remain approximately stable, on the whole, as pa-
rameter λLOG increases when keeping θv-LOG unchanged. The
reason is again that the strengthening of the spatial effect results
in the classification accuracy increasing at first with the gradual
increase in parameter λLOG. After parameter λLOG reaches a
certain value, the spatial smoothing effect becomes dominant,
resulting in an oversmooth classification performance for CRF-
LOG. However, since the classification result of CRF-LOG is
first combined to produce the segmentation map and is then
utilized in the classification fusion scheme at the object level
for CRF + OO, the smoothing effect has only a limited negative
influence on the final fusion classification, which results in
stable classification accuracy. When analyzing the effect on
the classification accuracy of parameter θv-LOG, a fine-tuning
function for the classification accuracy is found when keeping
λLOG unchanged.

C. Sensitivity Analysis for the Training Set Size

To analyze the sensitivity to the number of training samples,
the training numbers for each class are varied between 50, 100,
200, 300, 400, and 500 for the Fancun, Wuhan, and Washington
DC data sets. The classification result with the highest OA
accuracy is selected for all the classification algorithms at each
training number. It should be noted that the training sam-
ples are randomly selected from the overall ground truth, and
the remaining samples are used to evaluate the classification
accuracies.

As shown in Fig. 15(a)–(c), as the number of training sam-
ples increases, all the classification algorithms show a similar
trend. The experiments confirm that the classification accura-
cies of the methods incorporating spatial contextual informa-
tion (MSS-OO, FNEA-OO, MSVC, and CRF + OO) are all
better than SVM. In addition, the two object-oriented classi-
fication approaches (MSS-OO and FNEA-OO) have a similar
ability for HSR image classification. The classification accu-
racy of MSVC is slightly higher than the two object-oriented
classification approaches with the Fancun and Washington DC
data sets, whereas MSVC shows a slightly poorer performance

than the object-oriented classification methods for the Wuhan
data set. Since CRF + OO uses a classification fusion scheme
at the object level to integrate the classification results of CRF,
it has the best performance of all the approaches, with all
three data sets.

VI. CONCLUSION

In this paper, a hybrid object-oriented CRF classification
framework (CRF + OO), which integrates object-oriented clas-
sification with pairwise CRF classification, has been developed
to address the segmentation scale choice problem for object-
oriented classification and the oversmoothing phenomenon of
CRF for HSR remote sensing imagery. One reason for the
oversmoothing in pairwise CRF is that the pairwise spatial term
is dominant when compared with the unary spectral potential.
Therefore, the quasi-gamma unary potential is proposed to re-
strain the oversmooth effect of pairwise CRF, which strengthens
the spectral information, to trade off the spatial smoothing
effect and the spectral effect. In order to make the model more
robust and adaptive to HSR imagery, a classification fusion
scheme at the object level is put into use to achieve homoge-
neous regions in the final classification result. The objects are
obtained by a connected-component labeling algorithm, com-
bining the CRF classification results. This segmentation map
using the supervised classification result always has an approx-
imately optimal scale for each land cover type. Therefore, the
final classification result is achieved by a classification fusion
scheme integrating the classification information at the object
level. Three real data experiments using three types of HSR
images from QuickBird, IKONOS, and HYDICE demonstrate
the effectiveness of the proposed algorithm, compared with
other state-of-the-art classification algorithms, and they confirm
that the CRF + OO algorithm has a competitive quantitative
and qualitative performance for HSR image classification.

Another important reason for the oversmoothing in pairwise
CRF is that the limited neighborhood restricts the representa-
tional power of the model, meaning that it is unable to capture
the rich statistics of HSR images. In our future work, high-
order random fields will be studied to model these complex
statistics.
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