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Abstract—In the field of high spatial resolution (HSR) remote
sensing imagery classification, object-oriented classification and
conditional random field (CRF) approaches are widely used due
to their ability to incorporate the spatial contextual information.
However, the selection of the optimal segmentation scale in ob-
ject-oriented classification is not an easy task, and some pairwise
CRF models always show an oversmooth performance. In this pa-
per, a detail-preserving smoothing classifier based on conditional
random fields (DPSCRF) for HSR imagery is proposed to apply
the object-oriented strategy in the CRF classification framework,
thus integrating the merits of both approaches to consider the
spatial contextual information and preserve the detail information
in the classification. The DPSCRF model defines suitable potential
functions based on the CRF model for HSR image classification,
which comprise the spatial smoothing and local class label cost
terms. Both terms favor spatial smoothing in a local neighbor-
hood to consider the spatial information. In addition, the local
class label cost also considers the different label information of
neighboring pixels at each iterative step in the classification to
preserve the detail information. In order to deal with the spectral
variability of HSR imagery, a segmentation prior is used by the
object-oriented processing strategy. This models the probability
of each pixel based on the segmentation regions obtained by
the connected-component labeling algorithm. The experimental
results with three HSR images demonstrate that the proposed
classification algorithm shows a competitive performance in both
the quantitative and the qualitative evaluation when compared to
the other state-of-the-art classification algorithms.

Index Terms—Conditional random fields (CRFs), contextual
information, detail-preserving smoothing, high spatial resolution
(HSR), image classification, remote sensing.

I. INTRODUCTION

HE classification of high spatial resolution (HSR) remote
sensing imagery plays an important role in various ap-
plications such as damage assessment for environmental dis-
asters, precision agriculture, security applications, and urban
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planning due to the rich geometric and detail information [1].
The traditional classification methods such as support vector
machine (SVM) [2], [3], neural networks [4], and the maximum
likelihood classifier (MLC) [5], which are also called pixelwise
classification, use a pixel-level processing strategy to assign
each pixel one thematic label independently. These approaches,
which do not consider the correlations between neighboring
pixels, have been found to be effective for medium or coarse
resolutions in many applications. In addition, certain dimension
reduction and manifold learning approaches [6]-[10] can also
be used as a preprocessing step of the pixelwise classification to
find the more representative features in the subspace. However,
these methods have a certain limit in HSR image classification,
due to the increase in the spatial resolution, since they take no
account of the spatial correlation of the HSR imagery and thus
result in a salt-and-pepper classification appearance.

In order to overcome this problem, the strong spatial corre-
lations of HSR imagery can be used to deal with the spectral
variability issue [1], [11], [12]. There are two main approaches
used to take the spatial contextual information into account
in classification: 1) object-oriented classification methods and
2) random field methods. The object-oriented classification
methods [13] integrate the classification and segmentation al-
gorithms. The first key step is to use a segmentation algorithm
to split the image into relatively homogeneous regions named
segmentation regions or objects, and then a majority voting
strategy [14], [15] based on pixel-based classification or direct
classification, using the extracted features in each segmentation
region, is used to map the segmentation label map to the
classification result. Many different approaches can be used to
achieve image segmentation, such as the fractal net evolution
approach (FNEA) [16], the mean shift segmentation approach
[17], and watershed segmentation [18]. For the object-oriented
classification algorithms, the basic analysis unit is a segmenta-
tion region, which intrinsically provides the spatial contextual
information of a pixel to alleviate the effect of within-class
spectral variability and noise [19]. Thus, the object-oriented
classification methods have the ability to overcome salt-and-
pepper classification noise. However, the segmentation scale,
which directly affects the classification performance, is difficult
to choose due to the lack of prior information and the scale
diversity of the various land-cover types [20].

The random field method is another useful classification ap-
proach that can incorporate the spatial contextual information.
As the most popular random field model, the Markov random
field (MRF) model has been widely used in classification
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problems in recent years [1], [21]-[23] after first being intro-
duced into image processing in 1984 [24]. Recently, a novel
classification framework based on MRF, called the Markovian
support vector classifier (MSVC), has been proposed [25] and
has performed well. MSVC integrates SVM and MREF in a
unique formulation and uses iterated conditional modes (ICMs)
to optimize the energy function for the spatial contextual
classification.

MREF allows the user to incorporate the spatial information
in the label image, but it is difficult to model the spatial
interaction in the observed image data. As an improved model
for MRF, conditional random fields (CRFs) have the ability
to consider the spatial contextual information in both the
labels and observed image data. CRF was first proposed to
solve the segmentation and labeling of 1-D text sequences by
Lafferty er al. [26] in 2001 and was then successfully applied in
image analysis by Kumar and Hebert [27], [28]. In the follow-
ing years, CRF has been widely applied in image segmentation
[29], stereo vision [30], and activity analysis [31]. For the image
classification task, the most commonly used CRF model is
pairwise CRF, which uses the unary and pairwise potentials to
incorporate the spatial interaction in the local neighborhoods
(commonly using the 4- or 8-neighborhood of the pixel grid).
The pairwise CRF model has been successfully used for remote
sensing image classification [32]-[37], but some models may
present an oversmooth performance when obtaining the best
classification result [34], which can have a great impact on the
HSR image classification due to the presence of small important
structures in the HSR imagery.

In order to preserve the spatial details in the classification
result, the high-order potentials [38], [39] use more complex
statistics of the image and a larger neighborhood and have
performed well in experiments. However, the wide use of these
high-order potentials has been limited due to the difficulty of
efficient inference and the complexity of the models. Another
strategy to deal with the problem is to design suitable potential
functions in the pairwise CRF model. As an example, a sim-
plified CRF considering the boundary information constraint
in the pairwise potential [35] was developed for hyperspectral
image contextual classification. In addition, a support vector
conditional random field classifier incorporating a Mahalanobis
distance boundary constraint (SVRFMC) [36] has also been
proposed for HSR image classification. Recently, a hybrid
object-oriented CRF classification framework [37] has been
developed to preserve the spatial details by fusing the different
degrees of smooth classification results. These approaches have
shown a good adaptability and performance, but they fail to
sufficiently consider the different labeling information at each
iterative step in the classification, limiting the performance
in preserving the spatial details while considering the spatial
smoothing.

In this paper, a detail-preserving smoothing classifier based
on conditional random fields (DPSCRF) for HSR imagery is
proposed to take the spatial contextual information into account
in HSR imagery classification. In this aspect of the model, to
consider the spatial contextual information and preserve the
detail information, DPSCRF not only designs suitable potential
functions to incorporate the SVM and label cost constraint but
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uses a segmentation prior to deal with the spatial heterogeneity
issue by an object-oriented processing strategy. The effective
a-expansion inference algorithm is then used to obtain the
final classification map. The DPSCREF classification algorithm
is described in the following.

1) Potential functions with label costs. The DPSCRF clas-
sification algorithm defines suitable potential functions
(unary potential and pairwise potential) in the local neigh-
borhood. The unary potential is computed independently
for each pixel, using SVM to model the relationship
between the observed image data and the label, since
the discriminative SVM classifier performs very well in
HSR image classification in the case of limited training
samples. This approach also avoids explicit data distribu-
tion modeling. The pairwise potential is expressed as a
linear combination of the spatial smoothing term and the
local class label cost term to model the spatial interaction
between each pixel and its corresponding local neigh-
borhood. The spatial smoothing term and the local class
label cost term both encourage the neighboring pixels to
have the same label, based on the spectral and spatial
correlation. Moreover, the local class label cost term also
considers the different thematic labels of the neighboring
pixels in the iterative process to preserve the detail in-
formation. With these potential functions, DPSCRF not
only can consider the spatial contextual information but
also can preserve an abundance of land-cover detail.

2) Segmentation prior based on the object-oriented strategy.
In order to alleviate the effect of the within-class spectral
variability and noise in the feature space, a segmentation
prior is used. The segmentation prior copes with the
spatial heterogeneity issue by an object-oriented process-
ing strategy. The segmentation is first performed by the
use of the connected-component labeling algorithm in a
temporary classification result at each iterative step so
that it avoids the selection of scale. The segmentation
and classification is thereby integrated into the uniform
framework. The segmentation prior models the probabil-
ity of each pixel based on the segmentation information,
which is obtained by using a majority voting strategy with
the segmentation result to deal with the problems of noise
and the spectral variability of the HSR imagery.

3) Inference by the graph-cut-based a-expansion algorithm.
With the definition of the unary potential and pairwise
potential in the DPSCRF classification algorithm, an
inference algorithm is needed to perform the search for
the optimal labeling of each pixel. However, the exact
inference is an NP-hard problem [40] for the multi-
class HSR imagery. In this paper, the graph-cut-based
a-expansion inference algorithm [41] is used to obtain
the final classification result. This is an efficient approxi-
mate inference algorithm that has performed very well in
various applications of computer vision [42].

The experimental results of this study demonstrate the effi-
ciency of the proposed DPSCRF classification algorithm with
three HSR data sets, which consist of two multispectral HSR
images from different sensors (QuickBird and IKONOS) and
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a hyperspectral HSR image [Hyperspectral Digital Imagery
Collection Experiment (HYDICE)]. Compared to the other
state-of-the-art classification algorithms, the proposed algo-
rithm shows a competitive performance in both visualization
and quantitative evaluation.

The rest of this paper is organized as follows. The CRF
model is briefly introduced in Section II. Section III presents the
DPSCREF classification algorithm for HSR imagery in detail. In
Section IV, the experimental results and analysis for the three
HSR data sets are reported. The sensitivity analysis is discussed
in Section V. Finally, the work is concluded in Section VI.

II. CRF MODEL

As described in Section I, the spatial contextual information
of HSR remote sensing imagery is very important for the classi-
fication task. As a contextual classification model, the random
field method has been successfully applied in remote sensing
image classification [32]-[34]. As a widely used random field
model, CRF models local neighborhood interactions between
random variables in a unified probabilistic framework. CRF is a
probabilistic discriminative framework, which directly models
the posterior probability of the labels, given the observed image
data [26], [28], as a Gibbs distribution with the following form:

exp{ D telxery } (1)

ceC
where y represents the observed data from the input image
and x is the corresponding class labels of the whole image.
Z(y) = > exp{—>_.cc ¥e(Xc,y)} is the partition function,
and the function ¥.(X.,y) is the potential function, which
locally models the spatial interactions of random variables,
based on the neighborhood system and cliques in the image.

According to the types of cliques in the observed data
and their corresponding labels, the potential functions can be
divided into unary potentials, pairwise potentials, and even
high-order potentials. For the classification problem, pairwise
CRF is the widely used option, which includes both unary
and pairwise potentials. In addition, CRF can also incorporate
the high-order potentials, which can model more wide ranging
contextual information defined by the high-order neighborhood
system and the cliques. However, these general potentials
make the inference difficult. Therefore, pairwise CRF with an
8-neighborhood is used in this paper.

In the CRF classification framework, not only is the con-
textual information in the label image considered, but the
spatial interaction in the observed data can also be taken
into account. The CRF model directly models the posterior
distribution by relaxing the conditional dependences between
observed variables so that it can model the contextual infor-
mation in a flexible way. Although pairwise CRF has been
widely used for remote sensing image classification, certain
models may produce oversmooth classification results [34]. In
order to preserve the spatial details, the high-order potentials,
which allow us to model measures that involve more than
two variables, are introduced into the pairwise CRF model
to model the rich statistical information of the image for the
hyperspectral image classification [38]. However, the efficient

P(xly) =
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inference of these general high-order potentials is difficult, and
they always increase the complexity of the model due to consid-
ering local or global additional information. Defining suitable
potential functions in the pairwise CRF model can be another
strategy to deal with the problem. Simplified CRF [35] uses
the pairwise potential with a boundary information constraint
for spectral-spatial-based remote sensing image classification.
Moreover, an SVRFMC [36] has also recently been proposed to
deal with the problem. This approach uses SVM as the spectral
term and a Mahalanobis distance boundary constraint model as
the spatial term in the HSR classification framework. However,
these approaches fail to sufficiently consider the different label-
ing information at each iterative step in the classification, which
has an effect on the performance in preserving the spatial details
while considering the spatial smoothing.

III. DPSCRF FOR HSR IMAGERY

In this paper, in order to consider the spatial contextual infor-
mation and preserve the spatial details in the CRF classification
framework, a DPSCRF for HSR imagery is proposed. In the
DPSCREF classification framework, not only are the appropriate
potential functions defined to consider the different labeling in-
formation at each iterative step, but an object-oriented strategy
is also applied, thus integrating the merits of both approaches to
consider the spatial contextual information in the classification.

To clearly describe the proposed algorithm for HSR remote
sensing classification, the notations and definitions are first de-
scribed. Consider an observation field y = {y1,y2,.-.,y~N}+
where y; is the observed spectral vector of the input HSR
image pixel i € V ={1,2,...,N} and N is the total num-
ber of pixels in the image. We also set a labeling field x =
{x1,%2,...,xy} with x;(: = 1,2,..., N) in the domain of
the label set L = {1,2,..., K}, where K denotes the number
of classes.

As a discriminative classification framework, CRF directly
models the posterior distribution of labels x, given the observa-
tions y, as a Gibbs distribution in (1). The corresponding Gibbs

energy is defined as
= Pe(xey). )
ceC

E(x|y) = —log P(x|y) — log Z(y

Based on the Bayesian maximum a posteriori (MAP)
rule, the image classification corresponds to finding the label
image y that maximizes the posterior probability P(x|y)
(i.e., xprap = argmax, P(x|y)). Therefore, the MAP label-
ing x 7 op of the random field is given by

Xy ap = argmax P(x|y) = argmin F(x|y). 3)

Finding the maximization of the posterior probability
P(x|y) is therefore equivalent to finding the minimization of
the energy function E(x|y). Classification problems in remote
sensing are typically formulated as pairwise CRF, which can be
written as the sum of the unary and pairwise potentials

sz -Twy +)‘ Z '(/)zj Ti, Lj,y ) “4)

eV i€V,jeN;

E(x|y) =

¥;(x;, y) is the unary potential term, and v, ; (z;, ;,y) is the
pairwise potential term, defined over the local neighborhood NN;
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Fig. 1. Flowchart of the DPSCRF.

of the site <. The nonnegative constant \ is the tuning parameter
for the pairwise potential term, making the tradeoff between the
pairwise potential and the unary potential.

Based on the pairwise CRF model, the proposed DPSCRF
algorithm for HSR image classification is described in Fig. 1.
The DPSCRF method newly designs the unary potential term
and pairwise potential term, which incorporate the SVM and
label cost constraint for the HSR remote sensing image classifi-
cation, to undertake appropriate smoothing while considering
the spatial contextual information. In addition, in order to
alleviate the effect of the within-class spectral variability and
noise in the classification, a segmentation prior is applied by the
object-oriented strategy to deal with this spatial heterogeneity
issue. Finally, the optimal classification labels are obtained by
the graph-cut-based a-expansion inference algorithm.

A. Unary Potential

The unary potential ;(x;,y) models the relationship be-
tween the label and the observed image data, and it computes
the cost of a single pixel taking a particular class label, based
on the spectral feature vector. Therefore, it can be computed
independently for each pixel, using a discriminative classifier
that gives a probability estimate of the label x;, given the feature
vector. Typically, the unary potential ¢);(x;,y) is defined as

Yi(wi,y) = —In (P (2 = k| fi(¥))) ®)

where f is a feature mapping function that maps an arbitrary
patch in an image to a feature vector and f;(y) represents the

feature vector at site ¢, which denotes the spectral feature vector
in this paper. P(x; = li|fi(y)) is the probability of pixel x;
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taking the label [, based on the feature vector, which is given
by the pairwise coupling of the probability estimates from SVM
[43], [44] in this paper. It should be noted that other classifiers
that have a probabilistic output could also be used. However,
the SVM classifier is used in this paper since it always shows
a good performance in the case of a small training set for HSR
remote sensing image classification.

The unary potential term independently estimates the clas-
sification labels based on the image features so that the min-
imization of this term’s energy contribution by itself would
be equivalent to a noncontextual Bayesian classification of
the image. Therefore, the penalization of the unary potential
is low in the case of the corresponding pixel being correctly
classified with a high degree of confidence. This means that the
corresponding land-cover class label of the pixel is expected to
be kept in minimizing the energy when the confidence of the
pixel taking the class label is high. In contrast, the penalization
is high when the pixel is misclassified.

B. Pairwise Potential

The pairwise potential models the spatial contextual infor-
mation between each pixel and its corresponding neighborhood
by considering the labeling field and the observation field.
Although the spectral values of the neighborhood pixels in
homogeneous image regions may not seem to be the same, due
to the effect of spectral variability and noise, they are always
expected to share the same label due to the strong spatial corre-
lation. The pairwise potential models this smoothness prior and
takes the label constraint into account, which favors the neigh-
borhood pixels in homogeneous image regions with the same
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land-cover class and preserves the edges between two adjacent
homogeneous regions. The form of the pairwise potential is

_J0 ifx;=x;
Vi, 25, y) = { 9i;(y)+0*O1(z;,x;]y) otherwise ©)
where g;;(y) represents a smoothing term related to data y
and O (z;,x;]y) is a local class label cost term with a size of
|L| x |L|, which represents the cost between the labels z; and
x; within a neighborhood site. In addition, the parameter 6 is
the interaction coefficient that controls the degree of the label
cost term in the pairwise potential.

In this paper, the function g;;(y) models the interaction
between the neighboring pixels ¢ and j, and it is designed to
measure the difference in appearance between the neighboring
pixels, as suggested in [45] and [46]

9i5(y) = dist(i, j) " exp (—Blyi — y; ) (7)

where the pair of (i,7) is the spatial location of neighboring
pixels and the function dist(i, j) is their Euclidean distance.
y; and y; are the spectral vectors representing the appearance
of the ¢ and j pixels so that the strength of interaction within
a neighborhood is related to the image data and encourages
coherence in regions of similar appearance. Finally, the pa-
rameter [ is set to the mean square difference between the
spectral vectors of all the adjacent pixels in the image (i.e., 5 =
(2(|ly: — y;11*)) "L, where (.) is the average over the image).
The local class label cost term Oy (z;,2;|y) models the
spatial relationship between different neighboring class labels
x; and x;, based on the observed image data, and is defined as

min { P (| fi(y)) , P (z;1f;(y))}
max { P (z;]f(y)), P (z;]£;(y))}

where the label probability P(x;|f;(y)) based on the feature
vector f;(y) is used in our work, which is also given by SVM,
the same as the unary potential. This local class label cost
term takes the current class label x; of the neighboring pixels
into account to measure the interaction between the labels at
neighboring sites ¢ and 7, given the observed image y. The term
tends to change the label of the pixel, based on its neighborhood
spatial label information, when there is a stronger overlap
between the classes in the feature space, which affects the class
discrimination. Thus, the local class label cost term, which is
related to the current thematic labels, considers the spectral
information through the form of an estimate of the proba-
bility distributions of the thematic class labels to undertake
appropriate smoothing while considering the spatial contextual
information. Note that an arbitrary matrix with a size of |L| x
|L| can be used for determining O, (x;, x;|y). Therefore, the
label probability in this formula can also differ from the unary
potential so that it can also be estimated by other probabilistic
classifiers, which establishes the foundation for classification
fusion. In addition, provided that all the label probabilities are
set to be the same for all the labels and pixels, the label cost
term will always be a constant. In this case, the local class label
cost term is equivalent to the widely used Potts pairwise model.

The inclusion of the pairwise potential allows the spatial in-
teraction of each pixel, expressed in terms of its neighborhood,

Or(zi, z4ly) = 3
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to be considered in the classification. The pairwise potential is
represented as a linear combination of the smoothing term and
local class label cost term, and it models the spatial interaction
between the class labels, as related to image features in the
predefined neighborhood system. In the process of minimizing
the energy function E(x|y), the pairwise potential encourages
the neighboring pixels to have the same land-cover class in the
output classification map, except for boundary regions between
homogeneous image regions.

C. Segmentation Prior

The previous section gives a description of the pairwise
potential, which benefits from the strong geometrical spatial
information in the HSR image and is modeled by a linear
combination of the smoothing term and the local class label cost
term. The local class label cost term is expressed in the form of
an estimate of the probability distributions of the thematic class
labels. Thus, the pairwise potential depends on the accuracy of
the probability estimation, to a certain degree. However, due to
the spatial complexity and spectral variability of HSR imagery,
it is difficult to arrive at an exact estimate, particularly in the
case of limited samples, which may mean that the pairwise
potential cannot effectively remove some of the salt-and-pepper
classification noise. The object-oriented methods use the seg-
mentation objects as the basic analysis units to alleviate the
effect of the within-class spectral variability and noise in the
classification. Therefore, in our work, the segmentation prior
is used to deal with this spatial heterogeneity issue, which is
modeled by the object-oriented processing strategy.

Similar to the flow of object-oriented processing, the seg-
mentation is also the key step with the segmentation prior. The
segmentation is produced by the connected-component labeling
algorithm, which finds regions of connected pixels which have
the same value in the classification result at each iterative step
so that the segmentation avoids the selection of scale. The clas-
sical connected-component algorithm with an 8-neighborhood,
using a union-find data structure, is used to assign labels to the
segmentation objects [47], [48]. Then, for each segmentation
region, the label of the region can be obtained by using the
original SVM classification map to undertake majority voting.
The segmentation prior is defined as

P(x; = lseq) = max {P(x; =)}, k € |L]| )

where [s., represents the corresponding region label of the
pixel.

The segmentation prior makes the probability estimate of the
segmentation label to be the maximum of all the class labels
for each pixel. This is similar to the object-oriented method,
whose result can be obtained by the following processing,
using the probabilistic map. The processing P(z; = lseq) =
max{P(x; =)} + eps, k € |L| (eps is a very small positive
constant) is first applied for all the pixels, and then, the maxi-
mum probability rule is used to transform the probability map
to the final classification result. Therefore, the segmentation
prior uses a similar processing for the probability estimation
to alleviate the effect of the within-class spectral variability and
noise.
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a-expansion algorithm

x? = arbitrary labeling
Repeat
For each label ¢ € L={1.2,....K}
x"=argmin_£E (x”)
If E(x")< E(x”) then
x”=x"
End For
Until converged
Return x”

OO0~ O U LN —

Fig. 2. Graph-cut-based a-expansion algorithm.

D. Inference of DPSCRF

With the definition of the potential functions in DPSCREF,
inference is performed to predict the optimal labeling, which
corresponds to finding the minimum value with respect to
the energy function. To find the optimal labeling, different
approximate inference approaches have been proposed, such as
ICM and graph cuts. However, ICM easily makes the solution
stick at poor local minima, so it is extremely sensitive to the
initial value. In this paper, the graph-cut-based a-expansion
inference algorithm [41] is employed, which is a highly efficient
inference algorithm that has gained a great deal of attention in
various applications [42].

In the case of binary classification, graph cuts have been
proven to be fast and to converge to a global energy minimum.
However, HSR image classification is always a multiclass la-
beling problem. The graph-cut-based a-expansion algorithm
[41], [49] designs a special local search algorithm for the
energy minimization problem with multivalued variables to
solve the problem of very small moves making the solution
stick at poor local minima. The local search of the algorithm
works by repeatedly computing the global minimum of a binary
labeling problem via a graph-cut method in its inner loops. The
a-expansion inference algorithm is described in Fig. 2.

Given a current label zP = {z?,i € V}, the binary labeling
problem comes from step 4 of the a-expansion algorithm for
a particular label o € L in Fig. 2, which obtains the optimal
solution 2™ = {z!',i € V'} by optimizing the energy function
E,(«P) by the use of a graph-cut method. This step gives
each pixel the following two choices: either keep the current
label or switch to a particular label o € L = {1,2,...,K}.
All the pixels make this choice simultaneously, so there are
an exponential number of possible moves with respect to any
particular o, which ensures that the algorithm has a strong local
minimum property. Therefore, the a-expansion algorithm can
be seen to reduce the problem with multivalued variables to a
sequence of optimization subproblems with binary variables,
which can be easily optimized by the graph-cut method. More
details can be found in [41] and [49].

IV. EXPERIMENTS AND ANALYSIS
A. Experimental Description

To evaluate the performance of the proposed DPSCREF clas-
sification framework, three HSR remote sensing data sets [14]
are used in the experiments, with two multispectral HSR images
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(QuickBird and IKONOS) and a hyperspectral HSR image
(HYDICE). Meanwhile, the comparison algorithms, including
pixelwise classification algorithms, object-oriented approaches,
and random field methods, are also performed with the same
three data sets. The multiclass SVM approach implemented in
LibSVM [43] is used to conduct the pixelwise classification
experiment, which applies a radial basis function as the kernel
function and a cross-validation approach to determine the opti-
mal values of the parameters. The object-oriented classification
method performs a majority voting strategy within the seg-
ments, using the same pixelwise multiclass SVM classification
result. Mean shift segmentation (MSS) [17] and the multireso-
Iution segmentation algorithm in eCognition 8.0 (FNEA) [16]
are used to segment the image into relatively homogeneous
segmentation regions, and they are respectively represented
as MSS-OO0 and FNEA-OO. As for the FNEA segmentation
method, the image layer weights of the segmentation are all
set to be 1 because of the equal importance of each band,
and the shape and compactness parameters in the composition
of the homogeneity criterion are respectively set to 0.1 and
0.5. The random field methods in our comparison experiments
include MSVC [25] and SVREMC [36]. MSVC combines the
SVM and Markov random field models in a general framework
for spatial contextual classification to obtain the final labeling
by the ICM algorithm. The MSVC framework respectively
uses the Gaussian radial basis function and the Potts model as
the kernel function and local prior energy function. SVRFMC
considers the Mahalanobis distance boundary constraint in the
spatial term to preserve the spatial details in the classification
result.

In all the experiments, the quantitative performances are
assessed by four kinds of accuracies, which are the accuracy
of each class, the overall accuracy (OA is the percentage of
correctly classified pixels), the average accuracy (AA is the
average of the correctly classified pixels for each class), and
the Kappa coefficient (Kappa) [50]. In addition, McNemar’s
test [51] is used to determine the statistical significance of the
differences between the classification results obtained by the
varying algorithms, using the same test sample set. Given two
classifiers C; and Cs, the number of pixels misclassified by
C; but not by Cs is denoted as Mo, and Mo represents the
number of cases misclassified by Cs but not by Cy. If M15 +
My > 20, the X ? statistic can be considered as following a
chi-squared distribution:

[Mis — Mor| = 1)*

X? = ( ~ X3
Mo + Moy X

(10)

This test can check whether the difference between varying
classification results is meaningful. Given a significance level
of 0.05, then, X(2).05,1 = 3.841459. If X? is greater than X%.os,p
the results of the two classifiers C; and Cy are significantly
different.

B. Experimental Data Sets

The first experiment is conducted using a 2.4-m spatial
resolution HSR image, which was acquired in January 2010
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Fig. 3. Fancun QuickBird data set. (a) RGB false-color image (3, 2, 1).
(b) Ground-truth image.

Road

TABLE 1
CLASS INFORMATION OF THE FANCUN QUICKBIRD IMAGE

Class name Training samples Test samples
Water 50 9303
Tree 50 25192
Grass 50 4415
Bare 50 4002
Building 50 8183
Road 50 3858
Shadow 50 1606

[ ]
l:] Shadow

(®)

Fig. 4. Wuhan IKONOS data set. (a) RGB false-color image (3, 2, 1).
(b) Ground-truth image.

by the QuickBird sensor from the Fancun area in Hainan
province, China. This image contains 400 x 400 pixels and four
multispectral channels. As an example, the false-color image
by three bands is shown in Fig. 3(a). The Fancun QuickBird
data set includes seven land-cover classes, i.e., water, tree,
grass, bare, building, road, and shadow, and their corresponding
thematic distribution is displayed in Fig. 3(b). The number of
training and test samples for each class is given in Table I, and
the training samples for each class are randomly chosen from
the ground truth.

The second experiment uses the data of a different sensor to
assess the performance of the proposed algorithm. The Wuhan
image with a spatial resolution of 4 m is of an urban area that
was recorded by the IKONOS sensor over Wuhan in Hubei
province, China. The image has spatial dimensions of 400 x
600 pixels and blue, green, red, and near-infrared spectral chan-
nels. Fig. 4(a) and (b) respectively gives an overview of this
data set by combining the (3, 2, 1) bands and the corresponding
land-cover types. As with the Fancun data set, this image is also
divided into seven thematic classes and uses the same number
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TABLE 1I
CLASS INFORMATION OF THE WUHAN DATA SET

Class name Training samples Test samples

Building 50 6814
Grass 50 2788
Water 50 7720

Shadow 50 847

Bare soil 50 1080
Tree 50 13946
Road 50 1757

Fig. 5. Washington DC HYDICE data set. (a) RGB false-color image
(60, 27, 17). (b) Ground truth.

TABLE III
CLASS INFORMATION OF THE WASHINGTON DC HYDICE IMAGE

Class name Training samples Test samples
Roof 50 12988
Road 50 7936
Trail 50 1303
Grass 50 6286

Shadow 50 1560
Tree 50 3870

of training samples for each class to test the performance of
the algorithm in the case of limited training samples. Table II
shows the list of the seven classes, including the training and
test samples.

A high spatial-spectral resolution image is used in the third
experiment, which is a subset of the Washington DC data set
acquired by the HYDICE sensor. Since the roughly labeled
ground truth of the original Washington DC data set is not suf-
ficient to meet the requirement of evaluating the image details,
the subimage with more detailed labels is used in this paper. The
subimage contains 307 x 280 pixels and 191 bands. The false-
color image shown in Fig. 5(a) represents the appearance of the
area, and the corresponding ground truth is shown in Fig. 5(b).
Table III gives the number of randomly selected training and
test samples for each class of interest.

C. Experimental Setup

For the Fancun, Wuhan, and Washington DC data sets, the
optimal parameters for all the classification approaches are set
as follows to obtain the highest OA in the classification results.
The parameters C'/y of SVM are respectively set to 256/0.5,
4096/0.5, and 16384/0.125. The spatial/spectral bandwidth pa-
rameters of the MSS algorithm are chosen as 15/20, 3/50, and
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Fig. 6. Classification results for the Fancun QuickBird data set. (a) SVM.
(b) FNEA-OO. (¢) MSS-00. (d) MSVC. () SVRFMC. (f) DPSCRE.

19/10, respectively. For the FNEA algorithm, the segmentation
scale parameter is selected as 20, 40, and 80, respectively. For
the SVREMC algorithm, the fixed weight \; for trading off
the spatial term and spectral term is set as 0.2, 0.2, and 0.5,
respectively. Meanwhile, the A and 6 parameters of DPSCRF
are respectively selected as 0.7/3.4, 0.7/1, and 0.5/0.4.

D. Experimental Results and Analysis

For the Fancun, Wuhan, and Washington DC experiments,
the classification maps obtained by the different classifica-
tion algorithms (i.e., SVM, FNEA-OO, MSS-O0, MSVC,
SVRFMC, and DPSCRF) are shown in Figs. 68, respectively.
The corresponding quantitative results for the various classifi-
cation methods are reported in Tables IV-VI.

As can be observed from the classification maps, the clas-
sification result of the SVM algorithm, without considering
any neighborhood spatial contextual information, exhibits a
lot of classification noise. By taking the neighborhood in-
teractions into account, the object-oriented classification al-
gorithms (FNEA-OO and MSS-OO) and the random field

Fig. 7. Classification results for the Wuhan IKONOS data set. (a) SVM.
(b) FNEA-OO. (c) MSS-00. (d) MSVC. (e) SVREMC. (f) DPSCRE.

Fig. 8. Classification results for the Washington DC HYDICE data set.
(a) SVM. (b) FNEA-0O. (c) MSS-0O0. (d) MSVC. (e) SVRFMC. (f) DPSCRF.
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TABLE 1V
CLASSIFICATION ACCURACIES FOR THE FANCUN QUICKBIRD DATA SET

Accuracy (%)

OA AA

Methods Water Tree Grass Bare Building Road Shadow (%) (%) Kappa
SVM 98.80 9332 9416 98.13  67.02 91.52 9545 90.73 9120 0.8768
MSS-00 9930 9597 98.60 99.48  69.06 9546 8748 9280 92.19 0.9034
FNEA-OO 98.86 95.85 93.73 9933 71.04 9196 97.14 92.61 92.56 0.9008
MSVC 98.86 9634 94.65 9925 6743 9401 9695 9251 9250 0.8995
SVRFMC 99.55 9836 9436 99.58 71.36 9476  96.45 94.12 9349 0.9207
DPSCRF 9951 9894 94.65 99.65 8625 96.06 9371 96.57 9554 09535
TABLE V
CLASSIFICATION ACCURACIES FOR THE WUHAN IKONOS DATA SET
Accuracy (%) OA AA
Methods Building Grass Water Shadow Bare Tree Road (%) (%) Kappa
SVM 64.19 92.65 97.72 94.33 8898 9522 70.06 88.04 86.16 0.8421
MSS-00 71.10 9487 9885 91.62 96.85 9859 74.62 91.56 89.50 0.8874
FNEA-OO 69.00 93.76 98.99 93.03 96.11 9837 76.89 91.14 89.45 0.8819
MSVC 64.62 9444 9834 9847 91.85 97.48 80.08 90.00 89.33 0.8676
SVRFMC 69.03 9537 99.00 9835 9630 99.04 69.72 9131 89.54 0(.8843
DPSCRF 85.98 9591 99.00 97.17 89.35 99.64 64.77 9441 90.26 0.9249
TABLE VI
CLASSIFICATION ACCURACIES FOR THE WASHINGTON DC HYDICE DATA SET
Accuracy (%) 0OA AA

Methods Roof Road Trail Grass Shadow Tree (%) (%) Kappa

SVM 91.55 9249 97.62 9553 96.86 9129 9295 9422 0.9063

MSS-0O0 9518 93.83 9893 96.96 98.46  94.01 9535 96.22 0.9381

FNEA-OO 9547 93.59 96.16 97.66 9827  91.09 95.09 9537 0.9345

MSVC 94.18 94.71 9540 96.28 9724 9630 95.12 95.69 0.9351

SVRFMC 97.54 9534 92.10 96.90 9731 9755 96.69 96.12 0.9557

DPSCRF 9691 9627 9862 97.41 97.88  96.05 96.87 97.19 0.9582

methods (MSVC, SVRFMC, and DPSCRF) deliver a smoother
classification result and exhibit a better visual performance. In
Tables IV-VI, it can also be clearly seen that the algorithms
considering the spatial interaction show an improvement of
more than 2% over the pixelwise SVM classification, in terms
of the OA and Kappa coefficient, which demonstrates the effec-
tiveness of incorporating the spatial contextual information.

For the object-oriented classification approaches (FNEA-OO
and MSS-00), they always show a relatively good classification
performance. However, the segmentation scale has a great im-
pacton the classification performance, and it is difficult to choose
because different size land-cover classes often have different
optimal scales. Thus, some of the pixels for different land-cover
types are wrongly classified in the MSS-OO and FNEA-OO
methods, as shown in Figs. 6-8(b) and (c).

In Figs. 6(d)-8(d), the MSVC algorithm keeps the detail
information as much as possible, but it also retains certain
classification noise in the classification map. Therefore, as
Tables IV-VI show, the improvement in the classification ac-
curacy is very limited when compared to the SVM method.

SVRFMC is the latest CRF approach to be used for HSR
image classification, and it shows an acceptable classification
performance in all the experiments, as shown in Figs. 6(e)-8(e)
and Tables IV-VI. The algorithm also aims at preserving the
detail information so that the Mahalanobis distance boundary
constraint is used in the pairwise potential. However, it fails
to sufficiently consider the different labeling information at
each iterative step in the classification, limiting the performance
in preserving the spatial details. Therefore, an oversmooth
classification performance can also be seen in the results, which

is obvious in the Washington DC experiment, such as the road
highlighted in black box 2 in Fig. 8(e).

Although all the object-oriented classification algorithms
and random field methods can consider the spatial contextual
information in the classification, the performances of the classi-
fication algorithms in trading off the smoothness and denoising
are different. As shown in Figs. 6(f)-8(f), the DPSCRF method
shows a competitive performance in alleviating the salt-and-
pepper classification noise and keeping good boundary infor-
mation, which not only results in a smooth appearance but also
preserves useful information. As highlighted in black boxes 1
and 2, DPSCREF displays complete object visualization, while
the classification results of the other classification approaches
(FNEA-OO, MSS-00, MSVC, and SVRFEMC) contain some
meaningless regions or salt-and-pepper classification noise in
homogeneous areas. For the quantitative metrics (OA, AA, and
Kappa) reported in Tables IV-VI, the DPSCREF classification
algorithm again outperforms the other methods.

In addition, a pairwise comparison of the six classifica-
tion approaches for the three different experiments is given
in Tables VII-IX by the use of McNemar’s test to evaluate
the statistical significance, and the computation times of the
varying algorithms are also presented in Table X by the use
of a personal computer of 3.1 GHz with 8-GB RAM. It can be
seen from Tables VII-IX that all McNemar’s values between
DPSCREF and the other methods are greater than the critical
value of X(2).05,1 (3.841459), which means that the differences
are significant. Moreover, it should also be noted that some of
the McNemar’s values for the compared methods are smaller
than the critical value, which means that their differences
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TABLE VII
MCNEMAR’S TEST VALUES FOR THE FANCUN QUICKBIRD DATA SET

Methods [SVM MSS-OO FNEA-OO MSVC SVRFMC DPSCRF
SVM NA 32396 336.34  512.11 1031.40 2593.80
MSS-00 NA 3.76 8.51 186.00  1310.80

FNEA-OO NA 1.19 26457 1554.00
MSVC NA 329.54  1673.00

SVRFMC NA 846.12
DPSCRF NA

TABLE VIII

MCNEMAR’S TEST VALUES FOR THE WUHAN IKONOS DATA SET

Methods |SVM MSS-O0 FNEA-OO MSVC SVRFMC DPSCRF
SVM NA  499.14 346.96  237.76 486.75  1438.30
MSS-00 NA 11.28 13520  5.07 478.93

FNEA-OO NA 62.39 2.16 613.37
MSVC NA 113.03  884.75

SVRFMC NA 647.76
DPSCRF NA

TABLE IX

MCNEMAR’S TEST VALUES FOR THE WASHINGTON
DC HYDICE DATA SET

Methods [SVM MSS-O0 FNEA-OO MSVC SVRFMC DPSCRF
SVM NA  321.80  272.06 382.05 830.87 1064.60
MSS-00 NA 5.98 391 146.33  271.55
FNEA-OO NA 0.05 22414 33321
MSVC NA  250.13  332.65
SVRFMC NA 5.63
DPSCRF NA
TABLE X
COMPUTATION TIMES (IN SECONDS) FOR THE DIFFERENT METHODS
Methods | Fancun Wuhan Washington DC
SVM 16 19 30
MSS-00 15 22 32
FNEA-OO 1 2 6
MSVC 4805 10177 2197
SVRFMC | 1506 2520 1320
DPSCRF 9 12 15

are insignificant. For example, all McNemar’s values between
FNEA-OO and MSVC are smaller than the critical value in
the three different data sets. For the computation times, the
object-oriented and random field classification methods using
the same initial classification do not contain the time cost of
the initial SVM. It should be noted, however, that the MSVC
method is a general classification framework endowed with
efficient parameter optimization ability, and the time cost of
MSVC is therefore computed with the parameter optimization.
As shown in Table X, the computation times of FNEA-OO are
the smallest, while the SVRFMC algorithm needs much more
computation time since it needs dozens of iterations to converge
to a stable energy value by loopy belief propagation. The com-
putation times of the DPSCRF method are also acceptable for
the three experimental data sets since the a-expansion inference
algorithm is very efficient.

V. SENSITIVITY ANALYSIS

In the former section, the experimental results of the three
data sets confirm that DPSCRF performs well. However, the
A and 6 parameters of DPSCRF have an impact on the clas-
sification result, and they trade off the unary potential term
and pairwise potential term to make the balance between the
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smoothing and the spectral information. In this section, a sen-
sitivity analysis is provided to evaluate the performance of the
DPSCREF algorithm. Finally, the effects of different training and
test samples are also illustrated. Additional experiments are
therefore performed to evaluate the effect of these parameters
with the Fancun, Wuhan, and Washington DC data sets.

A. Sensitivity Analysis for the A and 0 Parameters

In order to study the effect of the A and € parameters of
DPSCRE, parameter A is varied from 0.1 to 1.9, with an interval
of 0.2, and parameter 6 is varied from 0.4 to 4.0, with an interval
of 0.6, in the additional experiments for the Fancun, Wuhan,
and Washington DC data sets. The relationship between the OA
and the A and # parameters of DPSCREF is presented in Fig. 9.

As shown in Fig. 9, the classification accuracies of DPSCRF
first increase and then slightly decrease with the increase in
parameter A. The A and 6 parameters of DPSCRF are both de-
signed to control the relative importance of the unary potential
term and the pairwise potential term. When parameter 6 is kept
unchanged, as parameter )\ increases, the relative importance of
the spatial term is increased so that the neighborhood spatial
contextual information can be effectively utilized to alleviate
the effect of the salt-and-pepper classification noise, which is
the reason for the initial increase in the classification accuracy.
However, when parameter \ reaches a certain value, the perfor-
mance tends to slightly decrease. This is due to the inclusion of
the large spatial smoothing effect, which leads to the varying
degrees of oversmooth performance, relating to the size of
parameter . For parameter 6, on the one hand, it has a similar
function to parameter \ as one part of the spatial smoothing
term; on the other hand, it also has a certain fine-tuning func-
tion for the classification accuracy when keeping parameter
A constant, as presented in Fig. 9. Therefore, DPSCRF is a
relatively stable classification algorithm, whose classification
performance changes regularly with the effect of its parameters.

B. Sensitivity Analysis for the Training Set Size

The effects of different training and test samples for all the
aforementioned classification algorithms are examined with the
Fancun, Wuhan, and Washington DC data sets. The training
samples are randomly selected from the corresponding overall
ground truth, and the numbers for each class are varied between
50, 100, 200, 300, 400, and 500 for the three data sets. The
remaining samples are used as test samples to evaluate the
classification accuracies. The classification accuracies (OA)
for each classification method at each training number are
illustrated in Fig. 10.

As can be observed from Fig. 10, the classification accuracies
of all the classification approaches share a similar trend as
the number of training samples increases. The classification
performances of all the algorithms show a gradual increase
with the increase in training number, except for certain training
numbers over the three data sets. In addition, the classification
approaches incorporating spatial contextual information (MSS-
00, FNEA-OO, MSVC, SVRFMC, and DPSCRF) always
outperform SVM, in all cases, with different training samples.
The object-oriented classification methods (i.e., MSS-OO and
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Fig. 9. Sensitivity analysis for the A and 6 parameters of DPSCRF with the three data sets. (a) Fancun QuickBird image. (b) Wuhan IKONOS image.
(c) Washington DC HYDICE image.
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Fig. 10. Sensitivity analysis for the number of training samples, with the three data sets. (a) Fancun QuickBird image. (b) Wuhan IKONOS image. (c) Washington

DC HYDICE image.

FNEA-OO) show a similar performance in all three image clas-
sifications. The MSVC and SVRFMC random field methods
share similar trends in classification accuracy, and SVRFMC
performs better than MSVC. MSVC has a similar ability to
the object-oriented approaches for HSR image classification, in
spite of being slightly better with the Fancun and Washington
DC data sets and slightly poorer with the Wuhan data set. The
DPSCREF algorithm has the best classification performance of
all the approaches, in all conditions, with different training
samples and all three data sets.

VI. CONCLUSION

In this paper, a DPSCRF for HSR imagery is proposed
to consider the spatial contextual information and preserve
the spatial details in classification. DPSCRF not only defines
suitable unary and pairwise potentials, based on the pairwise
CRF model, incorporating SVM and the label cost constraint to
alleviate the oversmooth performance, but also uses a segmen-
tation prior to deal with the spectral variability of HSR imagery.
Probabilistic SVM is used in the unary potential to obtain an
acceptable probability estimation with the limited training sam-
ples. The pairwise potential uses the spatial smoothing and local
class label cost terms to favor spatial smoothing in the local
neighborhood and to take the spatial contextual information
into account. The local class label cost term also has the ability
to alleviate an oversmooth classification result since it considers
the different label information of the neighboring pixels at each

iterative step in the classification. Moreover, based on an object-
oriented processing strategy, a segmentation prior is used to
adjust the probability of each pixel, based on the segmenta-
tion information, to cope with the spectral variability of HSR
imagery. The segmentation is obtained by using the connected-
component labeling algorithm in the temporary classification
result at each iterative step so that it avoids the selection of
scale. Three real data experiments using three types of HSR
images from QuickBird, IKONOS, and HYDICE demonstrate
that the DPSCRF classification algorithm has a competitive
accuracy and visual performance, compared with the other
state-of-the-art classification algorithms.

When using the local neighborhood in pairwise CREF, it is
difficult to capture the rich global statistical information, which
can result in an oversmooth performance. In our future work,
high-order random fields will be studied to improve the ability
of the model to capture these complex statistics.
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